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Abstract 

Topological quantum materials hold considerable promise for applications in quantum computing and 

spintronic devices due to their unique electronic properties. However, traditional Density Functional Theory 

(DFT) methods encounter difficulties in predicting these topological properties, including high 

computational costs and classification errors. This study proposes a machine learning framework that 

combines Graph Isomorphism Networks (GIN) with Atomic-Specific Persistent Homology (ASPH) to 

achieve efficient classification of topological materials by integrating global crystal structure features with 

local atomic topological descriptors. GIN is used to capture the global graph representation of periodic 

crystal structures, while ASPH extracts local features of atomic environments through multiscale topological 

analysis. These two feature sets are integrated following dimensionality reduction and subsequently 

classified using XGBoost. Principal Component Analysis (PCA) was employed to reduce the dimensionality 

of the high-dimensional ASPH feature vectors, thereby enhancing both model efficiency and accuracy. 

Experimental results indicate that this method performs exceptionally well in binary classification 

(topologically trivial/non-trivial), achieving an accuracy of 87.32%, which is significantly better than models 

based on a single feature. However, performance in ternary classification (trivial, semi-metal, topological 

insulator) declines to 75.04% due to class imbalance and feature overlap. The study validates the feasibility 

of combining graph neural networks with topological data analysis, providing an efficient computational 

framework for high-throughput screening of topological materials and offering new ideas for the application 

of multimodal feature fusion in materials science. 

Keywords 

topological quantum materials, graph isomorphism networks (GIN), atomic-specific persistent 

homology (ASPH), XGBoost classification 

 

1. Introduction 

Topological materials, including topological insulators and semimetals, exhibit extraordinary electronic 

properties arising from their unique band structures (Armitage et al., 2018). These materials are characterised 

by an insulating bulk state coexisting with conductive surface or edge states - a distinctive feature originating 

from nontrivial topological quantum states and protected by specific symmetries (Hasan & Kane, 2010). The 

symmetry-protected nature of these states renders these topological phases remarkably robust against various 
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perturbations, such as lattice defects, impurities, and external fields, making them exceptionally promising 

for quantum information processing and spintronic applications (Qi & Zhang, 2011). 

The dissipationless edge states of topological insulators, for instance, provide an ideal platform for 

realising quantum bits (qubits) in quantum computing architectures. Their potential applications span 

multiple domains, including low-power electronic devices, spin transport systems, and the construction of 

superconducting qubits (Halász & Balents, 2012; Moore, 2010). Meanwhile, topological semimetals offer 

equally intriguing possibilities due to their linearly dispersive bands and unconventional Fermi-arc surface 

states. These features not only enable the exploration of novel electronic phases but also facilitate the 

discovery of exotic transport phenomena, thereby bridging condensed matter physics and materials science 

in unprecedented ways (Soumyanarayanan et al., 2016). 

Despite significant advances in the study of topological materials, fundamental understanding and 

functional design remain formidable challenges. The discovery of topological phases critically depends on 

precise electronic structure calculations and their physical interpretation, while experimental characterisation 

of these quantum states often proves complex and time-consuming. This gap highlights the urgent need for 

robust theoretical and computational support. 

Density Functional Theory (DFT), as a first-principles computational method, has become a fundamental 

tool for electronic structure research and has played a significant role in predicting topological properties, yet 

it still faces numerous limitations. Firstly, the computational complexity of DFT increases exponentially with 

system size, making studies of large-scale complex crystal structures and multi-element systems extremely 

time-consuming or even infeasible, thereby directly restricting the widespread application of high-throughput 

automated screening (Blaha et al., 2020). Secondly, many classical DFT approximate functionals (such as 

commonly used GGA and LDA) exhibit systematic errors in bandgap estimation, potentially leading to 

misjudgement of topological phases, particularly in narrow-gap semiconductors or near topological phase 

boundaries. Although more accurate methods (e.g., GW, rigorous treatment of spin-orbit coupling, etc.) 

improve precision, their extremely high computational costs make them unsuitable for large-scale screening 

(Bramer & Wei, 2020; Janotti & Van de Walle, 2009; Perdew et al., 1996). Furthermore, complex many-

body effects, electron correlations, and temperature effects are not effectively captured by conventional DFT, 

further limiting its predictive capability and generalisability (Tran & Blaha, 2009). Consequently, the sole 

reliance on DFT for topological materials discovery creates a contradiction between computational resources 

and accuracy, driving the development of emerging empirical, data-driven, and machine learning approaches. 

Recent advances in machine learning (ML) have provided promising solutions to these computational 

challenges 11241. ML methods can achieve comparable accuracy to conventional approaches while 

significantly reducing computational costs, often by several orders of magnitude (Giustino et al., 2020; 

Peano et al., 2021). This acceleration is made possible by learning structure-property relationships from 

feature representations rather than solving quantum mechanical equations explicitly (Jha et al., 2019; Xue et 

al., 2016). The growing availability of experimental and DFT-calculated structural databases further 

facilitates data-driven modelling (Stanev et al., 2018; Tao et al., 2021). 

Notably, graph neural networks (GNNs) have emerged as particularly suitable for crystalline materials, 

where atomic structures are naturally represented as graphs (nodes = atoms, edges = interatomic interactions) 

(Wu et al., 2021; Xie & Grossman, 2018). Furthermore, GNNs can effectively integrate contextual 

information between nodes (atoms) through their message-passing mechanism, enabling them to adapt to 

multi-scale interactions in complex crystal structures (Fung et al., 2021). When combined with end-to-end 

training strategies, GNNs demonstrate outstanding performance in both topological property classification 

and prediction, establishing them as a crucial component of machine learning approaches in materials 

science. The Graph Isomorphism Network (GIN), a GNN variant specifically designed to discriminate 

between subtly different graph structures, exhibits discriminative power equivalent to the Weisfeiler-Lehman 

graph isomorphism test. Xu et al. (2019) demonstrated GIN’s superior performance in graph classification 

tasks. This capability proves crucial for identifying topological materials where small structural variations 

may lead to distinct electronic states. 
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Atom-specific persistent homology (ASPH) was initially developed for investigating protein active sites 

and organic small molecules, where it characterises the contribution of individual atoms to topological 

features by tracking the formation and annihilation of topological structures such as cavities and rings across 

different scales (Cang & Wei, 2018; Otter et al., 2017; Xia et al., 2015). This approach has proven effective 

in elucidating the role of specific atoms in maintaining structural stability and defining functional regions 

(Bramer & Wei, 2020). Building upon this foundation, Jiang et al. (2021) demonstrated that ASPH could be 

successfully extended to analyse the topological properties of periodic crystalline structures, achieving 

accurate predictions of formation energies and related material properties. 

In the present study, we combine ASPH with Graph Isomorphism Networks (GIN) to construct composite 

feature representations for classifying the topological properties of crystalline materials. The ASPH 

component captures local atomic environments through its multi-scale topological descriptors, while GIN 

processes the global connectivity patterns of the crystal structure (de Jong et al., 2016; Raccuglia et al., 2016). 

This combined approach provides a more comprehensive characterisation of materials by integrating both 

local and structural information, thereby improving the accuracy of topological classification (Chen et al., 

2019). 

The successful application of this methodology not only advances our fundamental understanding of the 

relationship between atomic structure and topological properties but also establishes an efficient framework 

for high-throughput screening of topological materials. The computational efficiency of this approach, 

coupled with its improved predictive capability, suggests promising potential for accelerating the discovery 

of novel topological phases. Future research directions may include extending this method to predict other 

quantum topological invariants and exploring its applicability to a broader range of material systems. 

2. Data Process 

2.1 Overall Procedure 

Figure 1: Overview of the process for the classification of topological quantum materials 

 

The overall procedure is explained in Figure 1. The proposed processing framework consists of two main 

components. First, the input data for the Graph Isomorphism Network (GIN) were derived from the 

topological classification of materials in the Topological Materials Database (Bradlyn et al., 2017; Vergniory 

et al., 2019; Vergniory et al., 2022) and the crystal structures provided by the Materials Project (Jain et al., 

2013). These data were then processed by the GIN to generate a subset of features for XGBoost. Second, 

high-dimensional feature vectors were extracted through atom-specific persistent homology (ASPH), 

followed by dimensionality reduction via Principal Component Analysis (PCA). Finally, the feature vectors 

from both components were integrated and fed into the XGBoost classifier for predictive modelling. 

2.2 Dataset Partitioning 

Following the removal of materials unavailable in the Materials Project from the Topological Materials 

Database, a curated dataset comprising approximately 30,000 materials was obtained. To address the dual-
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classifier architecture employed in this study, the dataset was allocated equally between the two classifiers. 

This partitioning strategy ensures adequate data availability for each classifier’s training requirements. This 

strategy also decouples feature generation and model training phases - specifically, the GIN-derived features 

for XGBoost were exclusively generated using the reserved subset, thereby preventing data leakage and 

enhancing the model’s generalisation capability. 

2.3 Crystal Graph Process 

Figure 2: Illustration of how to generate the GIN input vectors. According to the CGC, we find the neighbour atoms 

and generate the graph_nodes, graph_edges and relating information vectors 

 

The crystalline structure can be inherently represented as a graph, where nodes correspond to atomic 

positions and edges denote interatomic connectivity. However, the three-dimensional periodic nature of 

crystals necessitates structural preprocessing to eliminate redundant periodic replications and construct graph 

representations compatible with graph neural network (GNN) architectures. 

In this study, crystal graph construction was implemented using a Crystal Graph Coordinator (CGC) 

(Yamamoto, 2019), an algorithm that captures material properties through topological connectivity patterns 

rather than relying on spatial parameters such as bond distances. This approach prioritises the identification 

of dominant chemical bonding configurations and critical nearest-neighbour interactions, thereby ensuring 

the constructed graphs focus on chemically meaningful features. Figure 2 illustrates our method. The critical 

parameters of the CGC were configured with a neighbourhood cutoff radius (α) of 1.5 and a connection 

tolerance threshold (β) of 0.03. The neighbourhood cutoff radius (α) was determined through empirical 

optimisation to achieve optimal performance, while the connection tolerance threshold (β) was adopted 

based on recommended values from established literature.  

The present study addresses two classification tasks: distinguishing topological triviality in crystalline 

materials, and categorising materials into trivial, semimetal (SM), and topological insulator (TI) phases. 

Given that crystalline topological properties exhibit symmetry-protected robustness and potential 

correlations with graph homomorphism characteristics, the Graph Isomorphism Network (GIN) - a GNN 

variant renowned for its graph classification efficacy was adopted as the principal architecture (Xu et al., 

2019). 

As illustrated in Figure 3, our implementation incorporates three GIN convolutional layers with residual 

connections, followed by global average pooling. The baseline GIN update rule:  

   
(   )     ((   )     

( )  ∑     ( )   
( ))   (1) 

was enhanced through residual connectivity: 

    
(   )     ((   )     

( )  ∑     ( )   
( ))     
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 where   (fixed at 0 in this configuration) denotes the learnable parameter,  ( ) represents the neighbour 

set of node  , and MLP indicates multilayer perceptron. 

Each GINConv layer was sequentially coupled with ReLU activation and layer-specific dropout 

regularisation, where dropout rates were optimised via the Optuna framework to establish distinct 

probabilities per layer. This heterogeneous dropout strategy effectively mitigates overfitting risks while 

preserving critical feature interactions. The architecture culminates in graph-level embedding generation 

through global mean pooling. 

Figure 3: Model of GIN 

 

2.4 Atom‑Specific Persistent Homology (ASPH) 

The acquisition of distinctive features complementary to crystal graph representations necessitates 

alternative analytical approaches to decode topological information embedded in crystalline structures. 

While conventional structural descriptors employed in GIN predominantly capture atomic species and 

adjacency relationships, they lack explicit encoding of atom-resolved topological signatures. This limitation 

motivates the adoption of Atom-Specific Persistent Homology (ASPH) as a computational tool for 

generating atomic-level topological characterisations (Jiang et al., 2021).  

Conventional persistent homology, though effective in extracting global structural patterns, proves 

inadequate for periodic crystalline systems due to their complex unit cell configurations and translationally 

symmetric arrangements. ASPH addresses this challenge through localised topological analysis: By 

constructing chemical environments centred on individual atoms within the unit cell, it systematically 

encodes atom-specific chemical information into topological invariants through multi-scale filtration 

processes. This methodology generates unique topological fingerprints for individual atoms, effectively 

capturing both short-range bonding configurations and medium-range interaction patterns that govern 

material properties. 

The ASPH algorithm performs atom-specific topological characterisation by constructing an enlarged cell 

with an 8 Å cutoff radius around each target atom, which encompasses both the central atom and its local 

chemical environment. For each such enlarged cell, persistent homology analysis generates Betti-number 

sequences (Betti-0, Betti-1, and Betti-2 barcodes) for the central atom, producing corresponding topological 

barcodes. 

Using BaTiO₃ as a representative example, the feature construction process begins with computing Betti-

0, Betti-1 and Betti-2 barcodes for every atom in the unit cell, followed by aggregating these barcodes 

according to atomic species (Ba, Ti, O). For each Betti number, five statistical descriptors are calculated: 
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minimum, maximum, mean, standard deviation, and sum. Specifically, Betti-0 features consider only death 

values (yielding 5 features), while Betti-1 and Betti-2 features incorporate birth, death, and persistence length 

(generating 15 features per Betti number). This results in 35 features per atomic species (5 from Betti-0 plus 

15 each from Betti-1 and Betti-2). 

The complete feature vector combines both local atomic contributions (105 features from 3 species) and 

unit cell-level statistics (additional 35 features from whole-cell barcode integration), totalling 140 non-zero 

features. To ensure compatibility with machine learning workflows, the feature space is standardised to 

3,150 dimensions through zero-padding, accounting for all 89 naturally occurring elements in the data, plus 

one padding index in the 35-dimensional feature. 

3. Discussion on Feature Combination 

At this stage, each crystal structure possesses both ASPH-derived features and GIN classification outputs. 

However, significant dimensionality disparity exists between these two feature sets: the ASPH parameters 

comprise 3,150 dimensions (a sparse vector with numerous zero entries), while the GIN initially produces 

only two-dimensional logits for binary classification. To address this imbalance during feature combination, 

we implemented distinct dimensionality adjustment strategies for each feature type. 

For the high-dimensional ASPH features, we employed Principal Component Analysis (PCA) to mitigate 

sparsity-related issues. The PCA retained 272 principal components, capturing 93% of the total variance 

while effectively eliminating noise and redundant information inherent in the original sparse matrix. This 

dimensionality reduction preserves the most salient topological signatures while significantly improving 

computational efficiency. 

Regarding the GIN outputs, instead of using the final two-dimensional classification logits, we extracted 

the 88-dimensional pooled vector after the global mean pooling layer. This intermediate representation 

encodes richer structural information than the final classification output, as it preserves the global topological 

characteristics learned through the graph neural network’s hierarchical processing. The choice of 88 

dimensions reflects an optimal balance between information retention and model complexity, determined 

through empirical validation. 

The combined feature set (272 ASPH components + 88 GIN features) provides complementary material 

representations: the ASPH components capture local atomic environment topology through persistent 

homology, while the GIN features encode global crystalline structure patterns via graph-based learning. This 

dual perspective enables XGBoost to leverage both atom-specific chemical information and macroscopic 

structural characteristics during classification. Our studies confirmed that this combined approach 

outperforms models using either feature set independently, demonstrating the synergistic effect of integrating 

geometric topology with graph neural network representations. 

To elucidate the complementary nature of the combined feature vectors, we employed t-distributed 

Stochastic Neighbour Embedding (t-SNE) to project the high-dimensional representations onto a two-

dimensional manifold. As depicted in Figure 4, distinct clustering patterns emerge between the GIN-derived 

features and PCA-reduced ASPH features, with the combined feature space exhibiting improved inter-class 

separation compared to individual modalities. 

Notably, trivial and non-trivial topological classes demonstrate well-segregated distributions in the t-SNE 

visualisation, validating the effectiveness of our binary classification framework. However, partial overlap 

persists between semimetal and topological insulator clusters within the ternary classification scheme, 

providing geometric justification for the observed performance degradation in three-class categorisation. 

This spatial ambiguity in the feature manifold suggests inherent similarities in the topological descriptors of 

these two non-trivial phases, which may require advanced feature disentanglement techniques for enhanced 

discrimination. 

The visualisation further corroborates our methodological rationale: the integration of GIN’s global 

structural encoding (88D) with ASPH’s local topological signatures (272D) generates a hybrid feature space 

that better preserves discriminative characteristics than either individual representation. This synergistic 
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combination mitigates information loss inherent in single-modality dimensionality reduction, ultimately 

enhancing the downstream classifier’s decision boundary optimisation. 

4. Results and Discussion 

4.1 Model Validation 

As evidenced in Figure 5, significant performance differences exist between models using individual 

feature sets (88-dimensional GIN vectors or 272-dimensional PCA-processed ASPH vectors) and our 

integrated approach, confirming the effectiveness of our proposed framework. This comparative analysis 

demonstrates that combining GIN and ASPH feature vectors provides substantially more topological 

information than either method alone, validating our fundamental hypothesis regarding feature 

complementarity. 

Figure 4: Two kinds of feature vectors projected in the two-dimensional plane using t-distributed stochastic 

neighbour embedding. (a) GIN features, and (b) PCA features 

 
(a) 
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(b) 

Additionally, while the model using non-PCA-reduced features achieves similar accuracy to ours, its 

training time is significantly longer. Given that our dataset contains tens of thousands of samples—and even 

larger datasets will be needed for high-throughput screening—our model significantly reduces computational 

costs and accelerates materials discovery. 

Figure 5: Performance comparison between models using only GIN parameters, only ASPH parameters, non-PCA 

combined parameters, and our proposed model 

 

This optimised architecture not only accelerates individual calculations but also makes large-scale 

topological materials discovery computationally feasible - a crucial advancement given the exponential 

growth of quantum materials research. The successful balance between information preservation and 

dimensionality reduction represents a generally applicable strategy for other materials informatics challenges 

requiring multi-modal feature integration. 
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4.2 Classification Discussion 

Figure 6: Comparison of model performance in predicting topological class in binary classification 

 

As evidenced in Figure 6, the Graph Isomorphism Network (GIN) demonstrates superior classification 

performance compared to conventional graph neural networks (GNNs). We hypothesise this enhancement 

stems from GIN’s capacity to capture features critical for crystalline topological characterisation. 

Specifically, the interplay between atomic connectivity patterns within unit cells and the periodic 

arrangements across cells - which fundamentally govern topological invariants such as Chern numbers and 

Z2 indices - necessitates a model capable of discerning subtle graph isomorphism relationships. GIN’s 

theoretical equivalence to the Weisfeiler-Lehman (WL) graph isomorphism test (Xu et al., 2019) provides a 

mechanistic advantage in identifying these topology-defining structural patterns. 

The implemented GIN architecture employs three sequential GINConv layers with layer-wise adaptive 

dropout regularisation. Through systematic hyperparameter optimisation via the Optuna framework, distinct 

dropout rates were determined for each layer (Table 1). Notably, the initial layer exhibits near-zero dropout 

(0.0013), preserving critical atomic adjacency information and elemental features essential for topological 

discrimination. Subsequent layers demonstrate progressively increased dropout rates (0.3829 and 0.4590), 

effectively mitigating overfitting while maintaining hierarchical feature extraction capabilities. The 

architectural design aligns with the hierarchical nature of crystalline topology, where local atomic 

configurations establish baseline properties, while global symmetry considerations refine classification 

boundaries. 

Table 1: Dropout rate in three GINConv layers 

dropout_rate1 dropout_rate2 dropout_rate3 

0.0013 0.3829 0.4590 

The XGBoost classifier was trained using the combined feature vectors described previously, with 

hyperparameters including learning rate, max_depth, subsample, and min_child_weight optimised via the 

Optuna framework. During iterative optimisation, the learning rate stabilised around 0.007, while max_depth 

consistently converged to 7, subsample approached 1.0, and min_child_weight remained fixed at 2. This 

parameter convergence pattern reflects the Bayesian optimisation mechanism of Optuna, which 
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progressively narrows the search space toward regions yielding superior model performance. The observed 

parameter stability suggests that the dataset retains inherent complexity despite prior dimensionality 

reduction through PCA, necessitating precise configuration to balance model capacity and generalisation. 

Notably, the XGBoost model trained on the combined features outperformed the standalone GIN 

classifier, demonstrating that the PCA-processed ASPH features introduce discriminative dimensions 

complementary to the graph-derived representations. For comprehensive evaluation, alternative classifiers, 

including neural networks and random forests, were implemented. The neural network achieved an accuracy 

of 84.30%, while the random forest attained 86.71%, both underperforming compared to XGBoost’s superior 

classification accuracy. This comparative outcome highlights XGBoost’s enhanced capability to leverage the 

hybrid feature space, effectively integrating local topological invariants from ASPH with global structural 

patterns encoded by GIN, thereby establishing an optimised decision boundary for crystalline topology 

classification. 

The ternary classification experiment yielded an overall accuracy of 75.04% using XGBoost, with 

detailed performance metrics provided in Table 2. This performance degradation compared to binary 

classification primarily stems from the model’s limited discriminative capability between semimetal and 

topological insulator phases. As shown in panels (a) and (b) of Figure 4, which separately visualise the t-

SNE projections of GIN embeddings and PCA-reduced ASPH features, partial class overlap persists between 

semimetals and topological insulators in both feature spaces. The classification challenge is further 

exacerbated by inherent data limitations: topological insulator instances constitute only 14.70% of all 

samples, creating a pronounced class imbalance. This scarcity of representative examples hinders the 

model’s capacity to learn distinctive boundary characteristics. While the combined feature strategy 

successfully improved trivial/non-trivial separation over single-modality approaches, its efficacy diminishes 

when addressing finer-grained categorisation within non-trivial phases, indicating the need for enhanced 

feature engineering. 

Table 2: Performance metrics in ternary classification 

 Precision Recall F1-Score Support 

Trivial 0.8474 0.8319 0.8396 928 

Semimetal 0.7216 0.7869 0.7528 807 

Topological insulator 0.4918 0.4000 0.4412 300 

4.3 Comparison with Previous Work 

Table 3: Comparative analysis with existing binary classification approaches 

 Precision Recall F1-Score Accuracy 

XGBoost 0.895 0.875 0.885 0.924 

Topogivity 0.856 0.741 0.795 0.872 

Proposed Model 0.895 0.876 0.885 0.914 

Our model 0.874 0.873 0.872 0.873 

The first two rows of data are derived from the work of He et al. (2025), where the authors employed 

DFT calculations to generate physical property descriptors based on material characteristics. As shown in 

Table 3, while utilising DFT-computed data can yield better model performance, it inevitably requires 

significantly greater computational resources. Our work shares conceptual similarities with the approach by 

Rasul et al. (2024), but differs in methodology. They used Ishayev’s method (Qi & Zhang, 2011) for crystal 

graph construction, employing an 80-20 train-test split and deep neural networks (DNNs) as the final 

classifier. In our study, we evenly split the dataset, using one half to train the GIN model and the other half 

for XGBoost training. 

Although both approaches demonstrate that constructing new effective features and using multiple 

classifiers can improve performance over single classifiers, the differing data processing methods yield 

different outcomes, likely due to differences in how the features were processed and utilised. Nevertheless, 

both studies confirm that combining feature engineering with ensemble methods accelerates the discovery of 

topological properties in crystalline materials. 
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5. Conclusion 

This study proposes an innovative machine learning framework by integrating Graph Isomorphism 

Networks (GIN) and Atom-Specific Persistent Homology (ASPH) for the efficient classification of 

topological quantum materials. GIN captures global graph representations of periodic crystal structures to 

extract atomic connectivity patterns and macroscopic symmetry features. In parallel, ASPH analyses fine-

grained topological fingerprints of local atomic environments through multi-scale topological analysis, such 

as short-range bonding configurations and medium-range interaction patterns. The two types of features are 

fused after dimensionality reduction and fed into an XGBoost classifier for final prediction.  

Experimental results show that the framework achieves 87.32% accuracy in binary classification 

(trivial/non-trivial), significantly outperforming single-feature models and demonstrating the synergistic 

effect of global-local feature fusion. However, the accuracy drops to 75.04% in ternary classification 

(trivial/semimetal/topological insulator), primarily due to feature overlap between semimetals and 

topological insulators and class imbalance issues (topological insulator samples account for only 14.7%). t-

SNE visualisation further reveals that the hybrid feature space, combining GIN’s 88-dimensional global 

structural encodings with ASPH’s 272-dimensional local topological principal components, significantly 

enhances inter-class separation, particularly showing distinct clustering in binary classification, though 

geometric similarities between non-trivial phases still cause partial overlap, limiting fine-grained 

classification performance.  

Furthermore, comparative experiments demonstrate that XGBoost outperforms neural networks and 

random forests in integrating both feature types, with optimised parameters (learning rate=0.007, 

max_depth=7) determined through Bayesian optimisation via the Optuna framework, validating the 

effectiveness of the feature fusion strategy. Compared to existing studies (e.g., Rasul et al.’s method), this 

research employs uniform dataset partitioning and heterogeneous feature engineering strategies, preventing 

data leakage while improving model generalisation capability, further confirming the potential of multimodal 

feature fusion in materials science.  

Although the current method has limitations in distinguishing non-trivial phases, it establishes an efficient 

computational framework for high-throughput screening of topological materials by combining graph neural 

networks with topological data analysis, laying the foundation for predicting quantum topological invariants 

and cross-material system applications. Future research could further improve complex phase classification 

performance by introducing dynamic feature weighting, enhanced class-balancing strategies, or developing 

more refined topological descriptors, while extending applications to correlated quantum systems, such as 

high-temperature superconductors and topological superconductors. 

In summary, this work bridges graph-based structural analysis with persistent homology, advancing the 

computational characterisation of quantum materials. While challenges remain in resolving subtle phase 

distinctions, the methodology lays the groundwork for future innovations in data-driven materials science, 

underscoring the transformative potential of multi-modal feature engineering and ensemble learning in 

uncovering complex material properties. 
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