Published by: Zeus Press

Artificial Intelligence-Driven Autonomous Vehicles: Current Developments and the Future Prospects

Xianni Xie*

Industrial Design, Innovation Design College, City University of Macau, Macau, China

*Corresponding author: Xianni Xie, E-mail: u23090103977@cityu.edu.mo

Abstract

Artificial intelligence (AI) technology is profoundly transforming the field of autonomous driving, propelling it from theory to practical application. This paper systematically reviews the key technological advancements in AI-driven autonomous driving. Recognition and control algorithms based on deep learning and reinforcement learning have enhanced the safety of real-time decision-making. Multisensor fusion and vehicle-to-everything (V2X) communication technologies have strengthened environmental perception and vehicle-road cooperation capabilities. The combination of computer vision and lidar has enabled high-precision 3D modeling. Currently, the global market is experiencing rapid growth. China, which relies on the "5+6" strategy and policy pilots, is accelerating the implementation of this technology. Levels 2 and 3 (L2/L3) systems have been commercialized, and Level 4 (L4) systems have entered the demonstration operation stage. However, an insufficient perception of complex environments, the "black box" problem of decision-making algorithms, and hardware computing power bottlenecks remain the main challenges for higher-level autonomous driving. In the future, promoting the development of technology toward Level 5 (L5) through the research and development of explainable AI algorithms, breakthroughs in domestic chips, and cross-industry collaboration. At the same time, an ethical framework centered around people and an intelligent transportation ecosystem should be constructed.

Keywords

autonomous driving, artificial intelligence, technological challenges, deep learning: vehicle-to-everything (V2X) communication

1. Introduction

With the technological upsurge of the 21st century, artificial intelligence (AI) has become an essential driving force for the development of autonomous driving technology. As a core element within intelligent transportation systems, autonomous driving technology is witnessing a gradual shift from theoretical research to practical implementation. AI systems are now at the forefront, steering profound transformations in the automotive industry. In recent years, continuous advancements in AI technologies, including deep learning, computer vision, and convolutional neural networks, have spurred remarkable progress in autonomous driving. These improvements are evident in areas such as recognition, control, message processing, and perception systems. This paper explores the ways in which AI technology facilitates the growth of autonomous driving

technology. It analyzes the present state of progress and forecasts future development trends. This paper not only highlights technological breakthroughs and the challenges encountered but also focuses on the social implications of these developments.

2. Technological Applications Driven by Artificial Intelligence

2.1 Recognition and Control

Software algorithms of artificial intelligence, deep learning models, and reinforcement learning (RL), such as convolutional neural networks and recurrent neural networks, are employed for image recognition and scene understanding, enabling real-time decision-making. Moreover, decision-making and planning algorithms, along with the responsibility-sensitive safety (RSS) model, utilize reinforcement learning to predict driver behavior and make decisions regarding obstacle avoidance, acceleration, and deceleration. The control system translates these decisions into actual throttle, brake, and steering commands. These systems strike a balance between safety and efficiency, reducing human error, which is the cause of 94% of accidents (National Highway Traffic Safety Administration, 2023).

2.2 Data Processing and Communication

Artificial intelligence can preload detailed road information through data analysis, improving the accuracy of navigation. Vehicle-to-everything (V2X) wireless communication technology is applied. The mainstream technologies of V2X communication are dedicated short-range communication (DSRC) technology and the Cellular Vehicle to Everything (C-V2X) technology (China Academy of Information and Communications Technology, 2022). Functions such as lane keeping and crash avoidance are supported on the basis of data from radars, cameras, ultrasonic sensors, and lidars. The goal is to enable vehicles to drive more intelligently and safely on the road through rapid communication between vehicles, between vehicles and pedestrians, and between vehicles and intelligent infrastructure. The definition of 72 application scenarios for intelligent connected vehicles and the research and development of V2X technology have provided solutions to multiple traffic safety collision accidents and scenarios of pedestrians crossing the road, as described in *the white paper on Basic Applications of Intelligent Connected Vehicles* jointly released by the Future Mobile Communication Forum and the Vehicle Information Service Industry Application Alliance (Hu, 2022).

2.3 Perception System

Through multisensor fusion technology that integrates computer vision, lidar, millimeter-wave radar, etc., vehicles can achieve precise perceptions of the environment. For example, the Baidu Apollo platform combines lidar and cameras to construct high-precision 3D maps in real time (Ministry of Industry and Information Technology of China, 2021). Advancements in computer vision, such as models based on Transformer, can improve the accuracy of object recognition even under low-light conditions.

3. Current Status and Market Landscape Driven by Artificial Intelligence

3.1 Global Growth

The global market size is expected to reach 273.8 billion U.S. dollars in 2025, and the market size in China will exceed 450 billion yuan. The autonomous driving vehicle market is expanding at a compound annual growth rate of 22%. China's "5+6" artificial intelligence strategy has accelerated urban pilot projects. The rapid development of artificial intelligence-driven technologies in China benefits from cooperation between technology giants (such as Baidu and Alibaba) and automakers (such as BYD and Geely).

3.2 Policy Planning

Governments around the world have accelerated the implementation of technology through policy support. China has issued documents such as the *Management Specification for Road Tests of Intelligent Connected Vehicles*, promoting the construction of autonomous driving demonstration zones in cities such as Beijing and Shanghai (Baidu Apollo Team, 2024). The trend of collaborative innovation among the upstream and

downstream of the industrial chain is remarkable: NVIDIA provides high-performance computing chips, Horizon Robotics develops intelligent driving solutions for Level 2 to Level 4 (L2--L4), and Mushroom Inc. constructs an "integrated vehicle-road-cloud" system. Level 2 and 3 (L2/L3) systems (such as Tesla's full self-driving system, FSD, and Huawei's Advanced Driving System 2.0, ADS 2.0) have been widely deployed, whereas Level 4 (L4) autonomous taxis operate in cities such as Phoenix and Beijing (Tesla Inc, 2024).

4. Challenges Faced

4.1 Insufficiency of Environmental Perception

Currently, autonomous driving systems rely on multisensor fusion to achieve environmental perception. However, in complex weather conditions such as rain, snow, haze, typhoons, or sudden scenarios, the recognition accuracy decreases significantly, leading to frequent occurrence of the "long-tail problem". For example, domestic manufacturers generally rely on lidar, but 3D modeling technology has not yet achieved a breakthrough, making it difficult to completely replace human judgment. According to data from the U.S. National Transportation Safety Board, accidents caused by adverse weather account for more than 20% of accidents (National Transportation Safety Board, 2023).

4.2 Explainability and Inadequate Adaptability of Decision-making Algorithms

Although end-of-end AI models can improve decision-making efficiency, their "black box" nature makes it difficult to trace behavioral logic, and potential safety hazards are prominent. In addition, the existing algorithms have insufficient adaptability to edge events (such as emergency evasion) and still rely on human takeover, which restricts the implementation of Level 4 (L4) and Level 5 (L5) autonomous driving (Chen & Zhu, 2020).

4.3 Hardware Constraints

The costs of high-precision sensors and AI chips (such as NVIDIA Thor) remain high, and the performance of domestic chips still lags to the international level, which exacerbates the risks in the supply chain. The training of large-scale models requires the support of hundreds of billions of computing powers, further increasing the research and development costs.

5. Conclusion

Artificial intelligence stands as the bedrock of autonomous driving, effectively bridging the divide between technological viability and societal acceptance. Undoubtedly, persistent challenges in safety, ethics, and infrastructure remain. However, significant breakthroughs in AI algorithms, regulatory harmonization, and cross-industry collaboration are steadily charting a course toward achieving Level 5 autonomy. Future research endeavors must place the utmost emphasis on the design of human-centric artificial intelligence.

This is crucial to guarantee the equitable distribution of benefits and ensure the seamless and sustainable integration of autonomous driving into the global mobility ecosystem.

References

Baidu Apollo Team. (2024). High-precision 3D mapping and perception system. Baidu Inc.

Chen, X., & Zhu, X. B. (2020). Challenges of AI-driven autonomous driving systems. *Automotive Electronics*, (10), 4-5,10.

China Academy of Information and Communications Technology. (2022). *Smart connected vehicle applications white paper*. https://www.caict.ac.cn/kxyj/qwfb/bps/202301/P020230107447240886127.pdf

Hu, H. J. (2022). Application of artificial intelligence in automotive autonomous driving. *Times Auto*, (2), 19-20.

Ministry of Industry and Information Technology of China. (2021, July 27). *Intelligent connected vehicle road testing management guidelines*. https://www.gov.cn/zhengce/zhengceku/2021-08/03/content 5629199.htm

National Highway Traffic Safety Administration. (2023). *Crash statistics report*. U.S. Department of Transportation.

National Transportation Safety Board. (2023). *Impact of adverse weather on autonomous vehicle accidents*. https://s0.crsa.net/1685950885669 72.pdf

Tesla Inc. (2024). Full self-driving (supervised). https://www.tesla.com/fsd

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

Acknowledgment

This paper is an output of the science project.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).