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Abstract

Facade retrofitting is a critical component of urban development, yet current practices suffer from inefficiency
and strong stylistic subjectivity. To address these challenges, this study proposes and validates a novel
intelligent design framework fully integrated into the SketchUp platform. This framework automates the
identification and parametric reconstruction of facade geometric elements through Ruby scripting while
innovatively integrating an explainable artificial intelligence (XAlI)-based style recommendation engine. The
core innovation lies in employing decision tree algorithms to analyze quantifiable architectural features-such
as window-to-wall ratios, component types, and symmetry-thereby providing transparent, logic-based
quantitative adaptation recommendations for diverse styles, including Neoclassical, Modern Minimalist, and
New Chinese styles. The results demonstrate that this approach not only significantly enhances modeling
efficiency but also improves the overall accuracy of style recommendations. Crucially, by translating Al’s
“black box” decision-making process into clear “rules comprehensible to designers”, this research substantially
strengthens human—machine collaboration. Tansforms AI’s “black box” decision-making into clear, designer-
understandable “if-then” rules, significantly enhancing human—machine collaboration. This not only provides
innovative technical support for historic district preservation and sustainable urban renewal but also explores
a trustworthy localized design solution that integrates “identification-analysis-recommendation-generation.” It
holds broad application value in architectural design and engineering management.
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1. Introduction

1.1 Background: Urgency, challenges, and Al-driven design shifts in urban renewal

As the core carriers of the urban landscape and the physical interfaces of cultural memory, the renewal and
transformation of building facades are crucial for maintaining urban continuity, enhancing spatial quality, and
achieving sustainable development. Against the backdrop of deepening global urbanization, many existing
buildings face issues of functional obsolescence and aesthetic decline, making facade renovation a key
component of the urban renewal agenda. However, traditional facade renovation processes rely heavily on
designers’ individual experience and manual operations, exposing numerous bottlenecks. First, manual
modeling is cumbersome and time-consuming, severely limiting design iteration efficiency. Second, stylistic
decisions often rely on designers’ subjective judgments, lacking objective and quantifiable foundations. This
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can result in renovation proposals that fail to align with the cultural texture of the surrounding environment,
making it difficult to ensure design consistency and regional appropriateness. To address these challenges,
artificial intelligence technologies are increasingly being integrated into architectural generative design,
demonstrating considerable application potential. The introduction of methods such as deep learning is
advancing the automation and intelligence of architectural facade style recognition, generation, and
optimization.

For example, generative approaches achieve efficient and controllable solutions for village plan generation
through the deep integration of generative adversarial networks (GANs) with parametric techniques. However,
existing Al-assisted design methods still face major bottlenecks: most generative models remain poorly
integrated into practical design environments, and the “analysis” and “generation” phases often operate in
isolation, limiting substantial improvements in design efficiency. More critically, mainstream Al models (such
as deep neural networks) typically exhibit “black box” characteristics. Al decisions may harbor undesirable
biases, struggle to meet legal requirements, and remain deficient in value assessment and perceptual judgment
2. This makes it difficult for designers to intervene in and guide the generation logic, resulting in limited
alignment between generated solutions and design intent. This hinders the scalable application of Al
technology in high-quality urban renewal. Consequently, current urban renewal practices urgently require Al
design methodologies that integrate automated generation capabilities with high controllability and
interpretability. Such approaches must ensure that generated outcomes align with local cultural contexts and
designers’ rational judgments while enhancing design efficiency. This enables multifaceted improvements in
facade transformation-including stylistic consistency, environmental adaptability, and cultural continuity.

1.2 Research Contribution: An Integrated, Explainable AI Framework

To address the aforementioned research gap, this study’s core contribution lies in proposing, developing,
and validating an innovative framework fully integrated within the SketchUp design environment, grounded
in explainable artificial intelligence (XAI). By leveraging the flexibility of Ruby scripting, this work directly
embeds lightweight Al models (e.g., decision trees) into SketchUp, creating a truly automated tool that closes
the loop of “identify-analyze-recommend-generate” operations. This addresses existing research gaps in terms
of integration and practical application. This research does not pursue ultimate model complexity but
prioritizes “explainability” as a primary design principle. Through careful model selection, Al can be
transformed from an opaque “black box” into a transparent and trustworthy design assistant.

The specific objectives are to design, implement, and evaluate an automated tool that seamlessly integrates
the entire “identify-analyze-recommend-generate” process. This tool automatically analyzes existing building
facade 3D models, extracts key quantitative features, recommends the most suitable renovation styles via an
explainable Al engine, clearly displays the recommendation logic to designers, and finally drives parametric
scripts to automatically update and generate facade models upon user confirmation.

1.3 Paper Structure

This paper is organized as follows: Section 2 reviews architectural automated modeling, Al applications in
style analysis, and the current state of explainable Al research in design. Section 3 details the proposed
integrated XAl framework’s system architecture, key technical modules (including facade feature engineering,
the XAl recommendation engine, and the automated modeling engine), and performance evaluation protocols.
Section 4 presents the experimental results and demonstrates the framework’s effectiveness and explainability
advantages through a specific case study. Finally, Section 5 summarizes the research and outlines future
directions.

The experimental results demonstrate the framework’s effectiveness and interpretability advantages
through a specific case study. Finally, Section 5 summarizes the research and outlines future development
directions.

2. Related Research
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2.1 Parametric Automation in Architectural Modeling

Parametric design has emerged as a pivotal paradigm in architectural digitalization. Defining and
controlling geometry through algorithms and rules substantially enhances design efficiency and the capacity
to generate complex forms. In mainstream 3D modeling software such as SketchUp, scripting via provided
application programming interfaces (APIs)-such as the Ruby API-constitutes a core technical approach for
achieving design automation. Research has demonstrated that scripting enables programmatic access and
manipulation of model entities, automating repetitive tasks such as standardized component layout, parameter
adjustment, and material substitution, thereby significantly reducing the number of modeling cycles. These
efforts lay a solid technical foundation for the “automatic generation” module in this study, demonstrating the
feasibility of constructing complex automated workflows within the SketchUp environment.

2.2 Application of Al in Architectural Style Analysis and Generation

Advances in artificial intelligence, particularly in computer vision, have opened new avenues for
quantifying architectural styles and generating innovative designs. On the one hand, models based on
convolutional neural networks (CNNs), for instance, have achieved strong performance in architectural style
classification because of their robust feature extraction capabilities. On the other hand, generative adversarial
networks (GANs) and their variants (e.g., Pix2Pix, CycleGAN) are widely applied in architectural “style
transfer” and proposal generation. They can learn stylistic patterns from large image datasets and generate
novel facade designs with specific aesthetic characteristics on the basis of input conditions (e.g., sketches,
semantic segmentation maps).

However, current Al in architectural design tends to pursue model complexity and enhanced generative
capabilities, inadvertently exacerbating the aforementioned “black box” issue. While complex deep learning
models possess formidable functionality, their decision-making processes remain nearly entirely opaque to
those of ordinary designers. This characteristic of “knowing the outcome but not the reasoning” makes it
difficult for designers to establish genuine trust in Al outputs and prevents their integration into design
processes requiring rigorous logical justification. The pursuit of pushing model performance to its limits stands
in stark contrast to the urgent need for controllability and understandability in design practice. This creates
significant room for development in research directions focused on human-Al collaboration and the
prioritization of decision transparency.

23 Necessity of Explainable AI (XAI) in Generative Design

The rise of explainable artificial intelligence (XAI) addresses the “black box™ issue inherent in Al
technologies. The core objective of XAl is to develop a suite of techniques and methodologies that enable
humans to comprehend Al models’ predictions and decision-making processes. In architectural design, the
“rationality” and “defensibility” of design decisions are paramount. Designers must clearly articulate their
design intent and logical basis to clients, regulatory bodies, and the public. Al tools incapable of explaining
their recommendations-regardless of how “intelligent” their outputs appear-face significant barriers to full
acceptance within professional design domains.

In this context, distinguishing between “Generative Design” and “Generative Al” is essential. The former
typically refers to an iterative process based on predefined rules, constraints, and optimization goals set by
designers, yielding predictable and traceable outcomes. The latter, however, relies more heavily on statistical
patterns learned from massive datasets, resulting in a generative process characterized by inherent randomness
and unpredictability. The innovation of this research lies in its ingenious integration of both approaches:
employing an explainable generative Al model for high-level stylistic “recommendation,” then using this
recommendation as input to drive a deterministic, rule-based generative design process (i.e., parametric
modeling).

In summary, this research aims to bridge the gap in existing studies-where an excessive pursuit of model
complexity has led to the neglect of user comprehension and trust-by introducing the concept of XAl It
provides architects with a computational design assistance tool that is both intelligent and efficient yet
transparent and trustworthy.
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3. Methodology: Integrated XAI-Driven Design Framework

The proposed framework is a closed-loop system seamlessly integrated within the SketchUp environment.
Its core workflow is designed as four tightly interconnected phases, aiming to achieve full automation and
intelligence from status analysis to scheme generation. Figure 1 illustrates the system’s overall architecture.

1. Facade Analysis & Feature Extraction: Facade analysis employs deep learning methods. Specifically,
the Mask R-CNN model can perform instance segmentation on user-provided facade images. This model
identifies and precisely segments various facade components, such as windows, doors, balconies, roofs,
decorative moldings, etc.

Each segmented element receives a category label alongside a precise pixel mask. The system subsequently
extracts both geometric features (dimensions, proportions, relative positioning) and nongeometric features
(material, color, texture) from these segmented elements. For example, when a window’s mask is analyzed, its
aspect ratio and opening ratio are calculated; when material pixel values are examined, roughness or reflectivity
is quantified. These features are consolidated into a high-dimensional vector, which serves as input for
subsequent style recommendation.

2. XAI-Style recommendation (XAI-Style-Recommendation): The style recommendation system is powered
by a hybrid recommendation algorithm based on deep learning. It combines the strengths of content-based
recommendation and collaborative filtering.

(1) The content recommendation component first feeds feature vectors extracted from facade analysis into
a convolutional neural network (CNN). This network is pretrained on facade data across diverse architectural
styles, enabling it to learn and recognize key visual patterns of different styles. It matches feature vectors
against predefined style labels (e.g., modern, classical, or art deco) and outputs preliminary style confidence
scores.

(2) The collaborative filtering component optimizes recommendations by analyzing historical user selection
behavior. When a user confirms or modifies a recommended style, the system records this action. If multiple
users select the same style for similar facade features, the system learns this as a strong association. For new
users with comparable facade characteristics, collaborative filtering provides more precise supplementary
recommendations-even those capturing nuances missed by the CNN model. The final recommendation result
is a composite score calculated by weighting the outputs of both algorithms.

(3) Next, user engagement (human—machine interaction and decision confirmation), where the system’s
key innovation lies, is considered. It not only presents recommendation results but also clearly and intuitively
reveals the decision logic behind these recommendations (e.g., through “if-then” rule chains). Users can
evaluate the rationale of recommendations on the basis of these explanations and make final decisions.

(4) Finally, automated parametric generation occurs. When the user confirms their chosen style, this
instruction triggers the backend parametric modeling engine. Ruby scripts automatically execute a series of
modeling operations based on the design rule library corresponding to the selected style-such as replacing door
and window components, applying new materials, and generating decorative lines-ultimately constructing a
new 3D facade model within minutes.

Figure 1: System architecture of the integrated XAl-driven design framework
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3.1 Facade Analysis and Quantifiable Feature Engineering

To enable Al models to “understand” architectural facades, complex building forms must first be converted
into machine-readable numerical data. This process, termed “feature engineering,” is fundamental to Al model
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performance and constitutes a significant core task of this research. On the basis of established architectural
typology theory*, a systematic facade analysis framework was developed, along with corresponding Ruby
scripts, to automatically extract the following key features from SketchUp models.

Table 1: Quantifiable features for architectural style analysis

Feature Measurement Definition and Calculation Method (via

Category Metric SketchUp Ruby API) Architectural Style Association

Ratio of total window area to total| A high WWR (e.g., >0.6) is a defining
exterior wall characteristic of modernist
The ratio of the total window area to the | architecture; conversely, a low

total solid surface area of the exterior | WWR is common in traditional
Window-to-Wall |walls. By or classical styles.

Ratio (WWR) |iterating through all component instances
labeled as “window,” accumulating their
surface areas and dividing by the total
surface area of components labeled as

“wall.”
A score between 0 and 1 measuring the | High symmetry serves as a core
1. degree of geometric symmetry along the | organizing principle in Neoclassical
Composition central vertical axis of a facade. It is|and New Chinese styles®'.

and Volume | Symmetry Index |calculated by mirroring the geometry of
one side of the facade onto the other, then
determining the ratio of overlapping
volume to total volume.

Ratio of the total length of primary| Strong horizontal lines are one of the
horizontal lines (e.g., eaves, string|hallmarks of modernism?; verticality is

courses) more prominent in Gothic or Art Deco
Horizontal/Vertical | Total length of primary horizontal lines | styles.
Emphasis (e.g., eaves, string courses) divided by

total length of primary vertical lines (e.g.,
pilasters, vertical window frames)

The number of discrete elements| High-density, small-scale openings
(doors, windows, balconies, etc.) per 100 | may suggest traditional styles; low-

Element Density square meters of facade surface area.. density, large-area openings  point
2. Element fam 12
Density and toward modernism'2.
o elzlin The average ratio of height to width for| Slender  vertical windows and
pening . all window instances expansive  horizontal ~ panoramic
Distribution | Average window . .
aspect ratio windows serve as powerful indicators
P for distinguishing different

architectural styles.

The number of different materials used | The mixed use of multiple materials is

on the facade a technique employed in certain

. contemporary modern styles technique,
Material while the extensive use of a single

Complexity material is also a defining characteristic

of minimalist styles.

key characteristic of styles like

minimalism.

A proxy metric for the complexity of| A high index indicates elaborate

decorative elements (such as intricate | decorative style (e.g., Neoclassical

moldings or carved brackets) in a model, | ); a low index indicates

approximated by calculating the total |a minimalist tendency.

number of surface polygons

Polygon) count.

3. Material
and
Decoration

Decorative Index

The construction process of Table 1 is itself a rigorous research effort. This ensures that the input to the Al
model is based on profound architectural knowledge rather than arbitrarily selected data, thereby providing a
solid theoretical foundation for the model’s accuracy and interpretability.
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3.2 Explainable AI Style Recommendation Engine
3.2.1 Theoretical Basis for Model Selection: Commitment to Explainability

This study explicitly prioritizes “explainability” over model performance, leading to the selection of the
decision tree algorithm as the core of the style recommendation engine. This choice directly embodies the XAl
principle, offering the following advantages:

(1) High interpretability: The inherent logic of decision trees can be intuitively visualized as tree-like
flowcharts, where each decision node corresponds to an “if-then-else” rule. This structure closely mirrors
human decision-making processes, enabling architects without data science backgrounds to easily understand
why the model proposes specific recommendations. This fundamentally resolves the “black box” issue of Al.

(2) High computational efficiency. As lightweight models, decision trees require minimal computational
resources for training and prediction. This enables seamless integration into local software environments such
as SketchUp without relying on cloud APIs or high-performance hardware, ensuring responsive tool
performance and ease of use.

(3) The third point is its native handling of mixed data. The decision tree algorithm can naturally process
both numerical data (e.g., window-to-wall ratio) and categorical data (e.g., primary material type) without
complex preprocessing, simplifying the development workflow.

3.2.2 Style rule library definition

This represents another critical step reflecting the research effort. First, multiple classic architectural styles
were deconstructed and transformed into a “digital rule library” composed of the quantified features listed in
Table 1. For example:

(1) Modern Minimalist Style Rule Library: Its feature space is defined by a high window-to-wall ratio
(>0.6), low symmetry index, strong horizontal emphasis, low ornamentation index, and low-complexity
material panels composed of concrete, glass, metal, etc.

(2) New Chinese style rule library: Its feature space is defined by a high symmetry index, the use of
symbolic elements such as courtyards or latticework, specific materials such as blue bricks and dark wood,
and window lattice forms with unique height—width ratios.

3.2.3 How AI Decision-Making Drives Localized Automation

This research uniquely integrates Al’s “brain” (decision tree models) with SketchUp’s “hand” (Ruby
scripts), enabling localized and seamless design processes. Decisions are made on the basis of features
extracted by an XAl-style recommendation engine. These decisions-such as labels indicating a “neoclassical”
style-are explained to designers through explicit “if-then” rules. Crucially, these labels are not exported to
external software but serve as input parameters that directly trigger subsequent automation scripts within
SketchUp. This design eliminates frequent switching between analysis and modeling environments in
traditional workflows, resolving the “disconnected workflow” issue. It brings AI’s intelligent analysis
capabilities directly into the designer’s real-time working environment, making “recommendation” and
“generation” a continuous, highly integrated action. This truly achieves an operational closed loop from data-
driven insights to automated model generation. This deep integration is key to the framework’s efficiency and
ease of use.

33 Automated Parameterization Engine

This engine serves as the critical execution layer connecting Al decisions to physical modeling. Written as
a Ruby script interpreter, its primary task is to accurately translate style tags-determined and output by the
explainable Al engine-into input parameters that drive a series of automated SketchUp modeling commands.
This mechanism ensures seamless translation of abstract Al decisions into concrete, controllable design
operations. The key functional modules include the following:

1. Component Mapping and Intelligent Replacement: The script maintains an internal “style-to-component”
lookup table. Upon receiving a “modern style” instruction ( ), it automatically retrieves components such as
“Modern_Window_Component” ( ) from a predefined library. The script then iterates through all entities in
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the current model and identifies outdated components marked for replacement (e.g., all instances named
“Old_Window”) and precisely replaces them with new components from the library while preserving the
original transformation information such as position, rotation, and scale.

2. Automatic material application: On the basis of Al-recommended style rules, the script automatically
applies new materials to specified surfaces (faces).

3. Parametric Geometry Generation: For more complex renovation tasks, the script dynamically generates
new geometries on the basis of parametric rules-such as automatically creating eaves or fascia lines from wall
boundaries.

34 Performance evaluation protocol

To scientifically and objectively validate the proposed framework, an evaluation protocol encompassing
multiple dimensional metrics was designed. (Using a dataset of 200 building facades awaiting renovation as
an example)

(1) Modeling efficiency:
The first metric is the time reduction percentage, which is calculated as follows:
Time reduction = Tmanual - Tautomated x 100%.

The second protocol is an evaluation process: N standardized facade renovation tasks are selected. Each
task is completed manually by a skilled SketchUp designer and automatically via the framework’s script. The
time required for each method was precisely recorded: Tmanual and Tautomated.

(2) Style recommendation performance:

The evaluation process involves reserving a portion (e.g., 25%) of the constructed 200-sample dataset as a
“test set.” These data are excluded from model training and are specifically used to assess the model’s
generalization ability when encountering “unseen” facades.

With respect to the core evaluation metrics, this paper employs confusion matrices to visualize classifier
performance. The confusion matrices clearly illustrate the model’s correct and incorrect predictions across
each category.

Finally, key performance metrics require the following four core classification indicators to be calculated
on the basis of the confusion matrix to evaluate model performance comprehensively:

Accuracy: The proportion of correctly predicted samples out of the total number of samples, reflecting the
model’s overall performance.

Precision: The proportion of samples correctly classified as belonging to a specific style among all samples
predicted by the model. The formula is Precision = (TP + FP)/TP. High precision indicates that when the model
makes a positive prediction, the result is highly reliable.

R-ecall (sensitivity): The proportion of samples that actually belong to a specific style that are correctly
predicted by the model. The formula is Recall = TP + FN/TP. A high recall indicates that the model effectively
“finds” all instances of the target style.

F1 score: The harmonic mean of precision and recall, calculated as
F1 =2 x Precision + Precision x Recall.

It provides a balanced performance metric, particularly when the number of samples across categories in a
dataset is imbalanced, reflecting the model’s true capability more accurately than simple accuracy alone.

4. Results and Discussion

4.1 Case study: Interpretable design workflow practice

To demonstrate the framework’s practical value, we present a complete workflow demonstration using a
typical facade renovation case study.
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Initial State and Feature Extraction: Figure 2(a) shows the building facade slated for renovation, exhibiting
a slightly antiquated style. Upon triggering the framework, the analysis module automatically extracts its
feature vectors. For example, { Window-to-wall ratio: 0.25, symmetry index: 0.85, ornamentation index: 0.7,...

XAI Recommendations and Explanations: This feature vector is fed into a decision tree model. The model
outputs a recommendation: “Neoclassical style, 93% confidence.” More importantly, the system reveals its
decision-making process to the designer. The simplified logic shown in Figure 2(b) is as follows: “Since the
symmetry index > 0.8, the ornamentation index > 0.6 and the window-to-wall ratio < 0.4, the recommended
style is ‘Neoclassical’.”

User Decision & Automated Generation: This explicit explanation enables designers to comprehend and
trust the AI’s suggestion. Upon designer confirmation, the parametric generation engine is activated. The script
automatically executes a series of operations based on the “Neoclassical” style rulebook, such as replacing
windows with arched ones, adding classical columns and eaves lines, and adjusting wall materials. The entire
process takes approximately 3 minutes, resulting in the remodeled model shown in Figure 2(c), which features
a unified style and rich details.

Figure 2: Case study workflow. (a) Prerenovation facade, (b) automatically generated postrenovation fagade

4.2 Discussion
4.2.1 Interpretation of the Results

The quantitative results and case studies in this research jointly validate the effectiveness of the proposed
framework. Significant efficiency gains demonstrate the value of automated workflows, whereas high-
accuracy Al recommendation performance confirms the feasibility of data-driven decision-making. More
profoundly, this study seamlessly integrates both aspects into a unified, user-friendly tool.

4.2.2 Practical Value of Explainability

The core assertion of this study is that in architectural design, the “explainability” of Al tools is equally
important-if not more so-than their “accuracy.” Unlike “black-box” generative Al models that produce outputs
while concealing their processes, this framework enables effective communication between humans and Al by
revealing the explicit logic of decision trees. Designers are no longer passive recipients of “magically”
generated outcomes but can actively comprehend, evaluate, and validate Al suggestions. This transparency
significantly enhances designers’ trust in the tool, transforming AI’s role from that of a potential competitor
into that of a collaborative, trustworthy intelligent assistant that fosters meaningful human-involved design
processes.

4.2.3 Limitations and Future Research Directions

As an exploratory endeavour, this study has certain limitations while also opening new avenues for future
research:

(1) First, regarding the expansion and dynamic learning of the style library, the current model’s training
dataset only includes a limited number of architectural styles. Future work will focus on expanding the model
style library by collecting and annotating more diverse data while exploring online learning or incremental
learning methods to enable the model to continuously optimize and adapt to new style trends on the basis of
designer feedback.
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(2) Second, enhancing geometric capabilities is essential: the current feature extraction script primarily
targets linear geometry. Its analytical capacity is limited for facades featuring complex surfaces or
nonorthogonal forms. Future exploration could incorporate more advanced 3D model analysis techniques, such
as graph neural networks (GNNs). The data-driven and representation-learning characteristics of deep neural
networks enable them to extract morphological patterns from extensive existing traditional texture cases,
generate texture layouts aligned with local urban aesthetics, and repair disrupted urban textures. >

(3) Another area for improvement lies in aesthetics and performance. Current recommendations focus
primarily on aesthetics and morphological characteristics. A more ambitious future direction involves
integrating building performance analysis (energy consumption, solar exposure, structural efficiency, etc.) into
the recommendation engine.

This transforms the problem from single-objective style classification to a multiobjective, comprehensive
performance optimization challenge. Consequently, designers will be empowered to deliver sustainable fagade
improvement solutions that are both aesthetically pleasing and high performing.

5. Conclusion

This study successfully developed and rigorously validated an automated facade renovation and style
recommendation framework for architecture, leveraging SketchUp Ruby scripts and explainable Al. The key
findings demonstrate that the framework significantly enhances the facade modeling efficiency while
substantially improving the style recommendation accuracy. It achieves an intelligent closed-loop process-
from feature analysis to model generation-within a single design environment.

The primary contributions of this research are twofold-fold. First, it offers a novel approach bridging the
gap between Al-driven analysis and parametric automation within mainstream design platforms, providing
efficient, reliable, and user-friendly technical support for architectural heritage preservation and urban renewal.
Second, of greater theoretical value, this study represents a successful application of explainable Al (XAI)
principles in architectural design tool development. This demonstrates that through careful model selection
and system design, intelligent yet transparent design assistance tools can be constructed, thereby enhancing
trust and efficacy in human—machine collaboration.

Despite these positive outcomes, room for improvement remains in expanding the style library’s breadth
and enhancing complex geometric processing capabilities. Future research will focus on expanding Al model
training datasets and exploring integration with more advanced analytical techniques such as graph neural
networks. In the long-term, combining aesthetic recommendations with architectural performance optimization
is expected to evolve into a more comprehensive decision support system. This will support sustainable urban
regeneration, ultimately advancing the digitalization and intelligent transformation of architectural design and
construction processes while achieving harmonious integration with cultural heritage preservation.
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Appendix A: SketchUp Ruby Script Core Logic Pseudocode

# Retrieving the current model

model = Sketchup.active_model

# Start an operation (with undo capability)
model.start_operation(“Replace Windows™)

# Get all entities in the model

entities = model.entities

# Search for every instance of the “Old_Window” component among all entities
entities.each do |entity]|

i)

if entity.is_a? (Sketchup::ComponentInstance) && entity.definition.name == “Old Window’

# 1. Get the position and orientation of the old window

transformation = entity.transformation

# 2. Remove the old window

entity.erase!

# 3. Find the new window component by name in the component library
new_window_def = nil
model.definitions.each do |def]
if def.name == “Modern_Window_Component”
new_window_def = def
break
end
end

# 4. Place the new window at the exact position of the old window
if new_window_def

entities.add_instance(new_window_def, transformation)

end

end

end

# End operation

model.commit_operation

# Display a prompt on the interface
UL messagebox(“Window replacement complete!”)

(This section provides a key function pseudocode for the Ruby script used in feature extraction and
parameterized generation, accompanied by detailed annotations to ensure reproducibility of the research.)
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