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Abstract 

Facade retrofitting is a critical component of urban development, yet current practices suffer from inefficiency 
and strong stylistic subjectivity. To address these challenges, this study proposes and validates a novel 
intelligent design framework fully integrated into the SketchUp platform. This framework automates the 
identification and parametric reconstruction of facade geometric elements through Ruby scripting while 
innovatively integrating an explainable artificial intelligence (XAI)-based style recommendation engine. The 
core innovation lies in employing decision tree algorithms to analyze quantifiable architectural features-such 
as window-to-wall ratios, component types, and symmetry-thereby providing transparent, logic-based 
quantitative adaptation recommendations for diverse styles, including Neoclassical, Modern Minimalist, and 
New Chinese styles. The results demonstrate that this approach not only significantly enhances modeling 
efficiency but also improves the overall accuracy of style recommendations. Crucially, by translating AI’s 
“black box” decision-making process into clear “rules comprehensible to designers”, this research substantially 
strengthens human‒machine collaboration. Tansforms AI’s “black box” decision-making into clear, designer-
understandable “if-then” rules, significantly enhancing human–machine collaboration. This not only provides 
innovative technical support for historic district preservation and sustainable urban renewal but also explores 
a trustworthy localized design solution that integrates “identification-analysis-recommendation-generation.” It 
holds broad application value in architectural design and engineering management. 
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1. Introduction 

1.1 Background: Urgency, challenges, and AI-driven design shifts in urban renewal 
As the core carriers of the urban landscape and the physical interfaces of cultural memory, the renewal and 

transformation of building facades are crucial for maintaining urban continuity, enhancing spatial quality, and 
achieving sustainable development. Against the backdrop of deepening global urbanization, many existing 
buildings face issues of functional obsolescence and aesthetic decline, making facade renovation a key 
component of the urban renewal agenda. However, traditional facade renovation processes rely heavily on 
designers’ individual experience and manual operations, exposing numerous bottlenecks. First, manual 
modeling is cumbersome and time-consuming, severely limiting design iteration efficiency. Second, stylistic 
decisions often rely on designers’ subjective judgments, lacking objective and quantifiable foundations. This 
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can result in renovation proposals that fail to align with the cultural texture of the surrounding environment, 
making it difficult to ensure design consistency and regional appropriateness. To address these challenges, 
artificial intelligence technologies are increasingly being integrated into architectural generative design, 
demonstrating considerable application potential. The introduction of methods such as deep learning is 
advancing the automation and intelligence of architectural facade style recognition, generation, and 
optimization. 

For example, generative approaches achieve efficient and controllable solutions for village plan generation 
through the deep integration of generative adversarial networks (GANs) with parametric techniques. However, 
existing AI-assisted design methods still face major bottlenecks: most generative models remain poorly 
integrated into practical design environments, and the “analysis” and “generation” phases often operate in 
isolation, limiting substantial improvements in design efficiency. More critically, mainstream AI models (such 
as deep neural networks) typically exhibit “black box” characteristics. AI decisions may harbor undesirable 
biases, struggle to meet legal requirements, and remain deficient in value assessment and perceptual judgment 
2. This makes it difficult for designers to intervene in and guide the generation logic, resulting in limited 
alignment between generated solutions and design intent. This hinders the scalable application of AI 
technology in high-quality urban renewal. Consequently, current urban renewal practices urgently require AI 
design methodologies that integrate automated generation capabilities with high controllability and 
interpretability. Such approaches must ensure that generated outcomes align with local cultural contexts and 
designers’ rational judgments while enhancing design efficiency. This enables multifaceted improvements in 
facade transformation-including stylistic consistency, environmental adaptability, and cultural continuity. 

1.2 Research Contribution: An Integrated, Explainable AI Framework 
To address the aforementioned research gap, this study’s core contribution lies in proposing, developing, 

and validating an innovative framework fully integrated within the SketchUp design environment, grounded 
in explainable artificial intelligence (XAI). By leveraging the flexibility of Ruby scripting, this work directly 
embeds lightweight AI models (e.g., decision trees) into SketchUp, creating a truly automated tool that closes 
the loop of “identify-analyze-recommend-generate” operations. This addresses existing research gaps in terms 
of integration and practical application. This research does not pursue ultimate model complexity but 
prioritizes “explainability” as a primary design principle. Through careful model selection, AI can be 
transformed from an opaque “black box” into a transparent and trustworthy design assistant. 

The specific objectives are to design, implement, and evaluate an automated tool that seamlessly integrates 
the entire “identify-analyze-recommend-generate” process. This tool automatically analyzes existing building 
facade 3D models, extracts key quantitative features, recommends the most suitable renovation styles via an 
explainable AI engine, clearly displays the recommendation logic to designers, and finally drives parametric 
scripts to automatically update and generate facade models upon user confirmation. 

1.3 Paper Structure 
This paper is organized as follows: Section 2 reviews architectural automated modeling, AI applications in 

style analysis, and the current state of explainable AI research in design. Section 3 details the proposed 
integrated XAI framework’s system architecture, key technical modules (including facade feature engineering, 
the XAI recommendation engine, and the automated modeling engine), and performance evaluation protocols. 
Section 4 presents the experimental results and demonstrates the framework’s effectiveness and explainability 
advantages through a specific case study. Finally, Section 5 summarizes the research and outlines future 
directions. 

The experimental results demonstrate the framework’s effectiveness and interpretability advantages 
through a specific case study. Finally, Section 5 summarizes the research and outlines future development 
directions. 

2. Related Research 
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2.1 Parametric Automation in Architectural Modeling 
Parametric design has emerged as a pivotal paradigm in architectural digitalization. Defining and 

controlling geometry through algorithms and rules substantially enhances design efficiency and the capacity 
to generate complex forms. In mainstream 3D modeling software such as SketchUp, scripting via provided 
application programming interfaces (APIs)-such as the Ruby API-constitutes a core technical approach for 
achieving design automation. Research has demonstrated that scripting enables programmatic access and 
manipulation of model entities, automating repetitive tasks such as standardized component layout, parameter 
adjustment, and material substitution, thereby significantly reducing the number of modeling cycles. These 
efforts lay a solid technical foundation for the “automatic generation” module in this study, demonstrating the 
feasibility of constructing complex automated workflows within the SketchUp environment. 

2.2 Application of AI in Architectural Style Analysis and Generation 
Advances in artificial intelligence, particularly in computer vision, have opened new avenues for 

quantifying architectural styles and generating innovative designs. On the one hand, models based on 
convolutional neural networks (CNNs), for instance, have achieved strong performance in architectural style 
classification because of their robust feature extraction capabilities. On the other hand, generative adversarial 
networks (GANs) and their variants (e.g., Pix2Pix, CycleGAN) are widely applied in architectural “style 
transfer” and proposal generation. They can learn stylistic patterns from large image datasets and generate 
novel facade designs with specific aesthetic characteristics on the basis of input conditions (e.g., sketches, 
semantic segmentation maps). 

However, current AI in architectural design tends to pursue model complexity and enhanced generative 
capabilities, inadvertently exacerbating the aforementioned “black box” issue. While complex deep learning 
models possess formidable functionality, their decision-making processes remain nearly entirely opaque to 
those of ordinary designers. This characteristic of “knowing the outcome but not the reasoning” makes it 
difficult for designers to establish genuine trust in AI outputs and prevents their integration into design 
processes requiring rigorous logical justification. The pursuit of pushing model performance to its limits stands 
in stark contrast to the urgent need for controllability and understandability in design practice. This creates 
significant room for development in research directions focused on human-AI collaboration and the 
prioritization of decision transparency. 

2.3 Necessity of Explainable AI (XAI) in Generative Design 
The rise of explainable artificial intelligence (XAI) addresses the “black box” issue inherent in AI 

technologies. The core objective of XAI is to develop a suite of techniques and methodologies that enable 
humans to comprehend AI models’ predictions and decision-making processes. In architectural design, the 
“rationality” and “defensibility” of design decisions are paramount. Designers must clearly articulate their 
design intent and logical basis to clients, regulatory bodies, and the public. AI tools incapable of explaining 
their recommendations-regardless of how “intelligent” their outputs appear-face significant barriers to full 
acceptance within professional design domains. 

In this context, distinguishing between “Generative Design” and “Generative AI” is essential. The former 
typically refers to an iterative process based on predefined rules, constraints, and optimization goals set by 
designers, yielding predictable and traceable outcomes. The latter, however, relies more heavily on statistical 
patterns learned from massive datasets, resulting in a generative process characterized by inherent randomness 
and unpredictability. The innovation of this research lies in its ingenious integration of both approaches: 
employing an explainable generative AI model for high-level stylistic “recommendation,” then using this 
recommendation as input to drive a deterministic, rule-based generative design process (i.e., parametric 
modeling). 

In summary, this research aims to bridge the gap in existing studies-where an excessive pursuit of model 
complexity has led to the neglect of user comprehension and trust-by introducing the concept of XAI. It 
provides architects with a computational design assistance tool that is both intelligent and efficient yet 
transparent and trustworthy. 
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3. Methodology: Integrated XAI-Driven Design Framework 
The proposed framework is a closed-loop system seamlessly integrated within the SketchUp environment. 

Its core workflow is designed as four tightly interconnected phases, aiming to achieve full automation and 
intelligence from status analysis to scheme generation. Figure 1 illustrates the system’s overall architecture. 

1 . Facade Analysis & Feature Extraction: Facade analysis employs deep learning methods. Specifically, 
the Mask R-CNN model can perform instance segmentation on user-provided facade images. This model 
identifies and precisely segments various facade components, such as windows, doors, balconies, roofs, 
decorative moldings, etc. 

Each segmented element receives a category label alongside a precise pixel mask. The system subsequently 
extracts both geometric features (dimensions, proportions, relative positioning) and nongeometric features 
(material, color, texture) from these segmented elements. For example, when a window’s mask is analyzed, its 
aspect ratio and opening ratio are calculated; when material pixel values are examined, roughness or reflectivity 
is quantified. These features are consolidated into a high-dimensional vector, which serves as input for 
subsequent style recommendation. 

2. XAI-Style recommendation (XAI-Style-Recommendation): The style recommendation system is powered 
by a hybrid recommendation algorithm based on deep learning. It combines the strengths of content-based 
recommendation and collaborative filtering. 

(1) The content recommendation component first feeds feature vectors extracted from facade analysis into 
a convolutional neural network (CNN). This network is pretrained on facade data across diverse architectural 
styles, enabling it to learn and recognize key visual patterns of different styles. It matches feature vectors 
against predefined style labels (e.g., modern, classical, or art deco) and outputs preliminary style confidence 
scores. 

(2) The collaborative filtering component optimizes recommendations by analyzing historical user selection 
behavior. When a user confirms or modifies a recommended style, the system records this action. If multiple 
users select the same style for similar facade features, the system learns this as a strong association. For new 
users with comparable facade characteristics, collaborative filtering provides more precise supplementary 
recommendations-even those capturing nuances missed by the CNN model. The final recommendation result 
is a composite score calculated by weighting the outputs of both algorithms. 

(3) Next, user engagement (human‒machine interaction and decision confirmation), where the system’s 
key innovation lies, is considered. It not only presents recommendation results but also clearly and intuitively 
reveals the decision logic behind these recommendations (e.g., through “if-then” rule chains). Users can 
evaluate the rationale of recommendations on the basis of these explanations and make final decisions. 

(4) Finally, automated parametric generation occurs. When the user confirms their chosen style, this 
instruction triggers the backend parametric modeling engine. Ruby scripts automatically execute a series of 
modeling operations based on the design rule library corresponding to the selected style-such as replacing door 
and window components, applying new materials, and generating decorative lines-ultimately constructing a 
new 3D facade model within minutes. 

Figure 1: System architecture of the integrated XAI-driven design framework 

 

3.1 Facade Analysis and Quantifiable Feature Engineering 
To enable AI models to “understand” architectural facades, complex building forms must first be converted 

into machine-readable numerical data. This process, termed “feature engineering,” is fundamental to AI model 
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performance and constitutes a significant core task of this research. On the basis of established architectural 
typology theory4, a systematic facade analysis framework was developed, along with corresponding Ruby 
scripts, to automatically extract the following key features from SketchUp models. 

Table 1: Quantifiable features for architectural style analysis 

Feature 
Category 

Measurement 
Metric 

Definition and Calculation Method (via 
SketchUp Ruby API) Architectural Style Association 

1. 
Composition 
and Volume 

Window-to-Wall 
Ratio (WWR) 

 Ratio of total window area to total 
exterior wall 
The ratio of the total window area to the 
total solid surface area of the exterior 
walls. By 
iterating through all component instances 
labeled as “window,” accumulating their 
surface areas and dividing by the total 
surface area of components labeled   as 
“wall.” 

 A high WWR (e.g., >0.6) is a defining 
characteristic of modernist 
architecture; conversely, a low 
WWR is common in traditional 
or classical styles. 

Symmetry Index 

 A score between 0 and 1   measuring the 
degree of geometric symmetry along the 
central vertical axis of a facade. It is 
calculated by mirroring the geometry of 
one side of the facade onto the other, then 
determining the ratio of overlapping 
volume to total volume. 

 High symmetry serves as a core 
organizing principle in Neoclassical 
and New Chinese styles²¹. 

Horizontal/Vertical 
Emphasis 

 Ratio of the total length of primary 
horizontal lines (e.g., eaves, string 
courses) 
Total length of primary horizontal lines 
(e.g., eaves, string courses) divided by 
total length of primary vertical lines (e.g., 
pilasters, vertical window frames) 
. 

 Strong horizontal lines are one of the 
hallmarks of modernism³; verticality is 
more prominent in Gothic or Art Deco 
styles. 

2. Element 
Density and 

Opening 
Distribution 

Element Density 

   The number of discrete elements 
(doors, windows, balconies, etc.) per 100 
square meters of facade surface area.. 

 High-density, small-scale openings   
may suggest traditional styles; low-
density, large-area openings   point 
toward modernism¹². 

Average window 
aspect ratio 

 The average ratio of height to width for 
all window instances 
. 

 Slender vertical windows and 
expansive horizontal panoramic 
windows serve as powerful indicators 
for distinguishing different 
architectural styles. 

3. Material 
and 

Decoration 

Material 
Complexity 

 The number of different materials used 
on the facade 
. 

 The mixed use of multiple materials is 
a technique employed in certain 
contemporary modern styles technique, 
while the extensive use of a single 
material is also a defining characteristic 
of minimalist styles. 
key characteristic of styles like 
minimalism. 

Decorative Index 

 A proxy metric for the complexity of 
decorative elements (such as intricate 
moldings or carved brackets) in a model, 
approximated by calculating the total 
number of surface polygons 
Polygon) count. 

 A high index indicates elaborate 
decorative style (e.g., Neoclassical 
); a low index indicates 
a minimalist tendency. 

The construction process of Table 1 is itself a rigorous research effort. This ensures that the input to the AI 
model is based on profound architectural knowledge rather than arbitrarily selected data, thereby providing a 
solid theoretical foundation for the model’s accuracy and interpretability. 
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3.2 Explainable AI Style Recommendation Engine 
3.2.1 Theoretical Basis for Model Selection: Commitment to Explainability 

This study explicitly prioritizes “explainability” over model performance, leading to the selection of the 
decision tree algorithm as the core of the style recommendation engine. This choice directly embodies the XAl 
principle, offering the following advantages: 

(1) High interpretability: The inherent logic of decision trees can be intuitively visualized as tree-like 
flowcharts, where each decision node corresponds to an “if-then-else” rule. This structure closely mirrors 
human decision-making processes, enabling architects without data science backgrounds to easily understand 
why the model proposes specific recommendations. This fundamentally resolves the “black box” issue of AI. 

(2) High computational efficiency. As lightweight models, decision trees require minimal computational 
resources for training and prediction. This enables seamless integration into local software environments such 
as SketchUp without relying on cloud APIs or high-performance hardware, ensuring responsive tool 
performance and ease of use. 

(3) The third point is its native handling of mixed data. The decision tree algorithm can naturally process 
both numerical data (e.g., window-to-wall ratio) and categorical data (e.g., primary material type) without 
complex preprocessing, simplifying the development workflow. 

3.2.2 Style rule library definition 
This represents another critical step reflecting the research effort. First, multiple classic architectural styles 

were deconstructed and transformed into a “digital rule library” composed of the quantified features listed in 
Table 1. For example: 

(1) Modern Minimalist Style Rule Library: Its feature space is defined by a high window-to-wall ratio 
(>0.6), low symmetry index, strong horizontal emphasis, low ornamentation index, and low-complexity 
material panels composed of concrete, glass, metal, etc. 

(2) New Chinese style rule library: Its feature space is defined by a high symmetry index, the use of 
symbolic elements such as courtyards or latticework, specific materials such as blue bricks and dark wood, 
and window lattice forms with unique height‒width ratios. 

3.2.3 How AI Decision-Making Drives Localized Automation 
This research uniquely integrates AI’s “brain” (decision tree models) with SketchUp’s “hand” (Ruby 

scripts), enabling localized and seamless design processes. Decisions are made on the basis of features 
extracted by an XAI-style recommendation engine. These decisions-such as labels indicating a “neoclassical” 
style-are explained to designers through explicit “if-then” rules. Crucially, these labels are not exported to 
external software but serve as input parameters that directly trigger subsequent automation scripts within 
SketchUp. This design eliminates frequent switching between analysis and modeling environments in 
traditional workflows, resolving the “disconnected workflow” issue. It brings AI’s intelligent analysis 
capabilities directly into the designer’s real-time working environment, making “recommendation” and 
“generation” a continuous, highly integrated action. This truly achieves an operational closed loop from data-
driven insights to automated model generation. This deep integration is key to the framework’s efficiency and 
ease of use. 

3.3 Automated Parameterization Engine 
This engine serves as the critical execution layer connecting AI decisions to physical modeling. Written as 

a Ruby script interpreter, its primary task is to accurately translate style tags-determined and output by the 
explainable AI engine-into input parameters that drive a series of automated SketchUp modeling commands. 
This mechanism ensures seamless translation of abstract AI decisions into concrete, controllable design 
operations. The key functional modules include the following: 

1. Component Mapping and Intelligent Replacement: The script maintains an internal “style-to-component” 
lookup table. Upon receiving a “modern style” instruction (  ), it automatically retrieves components such as 
“Modern_Window_Component” (  ) from a predefined library. The script then iterates through all entities in 
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the current model and identifies outdated components marked for replacement (e.g., all instances named 
“Old_Window”) and precisely replaces them with new components from the library while preserving the 
original transformation information such as position, rotation, and scale. 

2. Automatic material application: On the basis of AI-recommended style rules, the script automatically 
applies new materials to specified surfaces (faces). 

3. Parametric Geometry Generation: For more complex renovation tasks, the script dynamically generates 
new geometries on the basis of parametric rules-such as automatically creating eaves or fascia lines from wall 
boundaries. 

3.4 Performance evaluation protocol 
To scientifically and objectively validate the proposed framework, an evaluation protocol encompassing 

multiple dimensional metrics was designed. (Using a dataset of 200 building facades awaiting renovation as 
an example) 

(1) Modeling efficiency: 

The first metric is the time reduction percentage, which is calculated as follows: 

Time reduction = Tmanual - Tautomated × 100%. 

The second protocol is an evaluation process: N standardized facade renovation tasks are selected. Each 
task is completed manually by a skilled SketchUp designer and automatically via the framework’s script. The 
time required for each method was precisely recorded: Tmanual and Tautomated. 

(2) Style recommendation performance: 

The evaluation process involves reserving a portion (e.g., 25%) of the constructed 200-sample dataset as a 
“test set.” These data are excluded from model training and are specifically used to assess the model’s 
generalization ability when encountering “unseen” facades. 

With respect to the core evaluation metrics, this paper employs confusion matrices to visualize classifier 
performance. The confusion matrices clearly illustrate the model’s correct and incorrect predictions across 
each category. 

Finally, key performance metrics require the following four core classification indicators to be calculated 
on the basis of the confusion matrix to evaluate model performance comprehensively: 

Accuracy: The proportion of correctly predicted samples out of the total number of samples, reflecting the 
model’s overall performance. 

Precision: The proportion of samples correctly classified as belonging to a specific style among all samples 
predicted by the model. The formula is Precision = (TP + FP)/TP. High precision indicates that when the model 
makes a positive prediction, the result is highly reliable. 

R-ecall (sensitivity): The proportion of samples that actually belong to a specific style that are correctly 
predicted by the model. The formula is Recall = TP + FN/TP. A high recall indicates that the model effectively 
“finds” all instances of the target style. 

F1 score: The harmonic mean of precision and recall, calculated as 

F1 = 2 × Precision + Precision × Recall. 

It provides a balanced performance metric, particularly when the number of samples across categories in a 
dataset is imbalanced, reflecting the model’s true capability more accurately than simple accuracy alone. 

4. Results and Discussion 

4.1 Case study: Interpretable design workflow practice 
To demonstrate the framework’s practical value, we present a complete workflow demonstration using a 

typical facade renovation case study. 
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Initial State and Feature Extraction: Figure 2(a) shows the building facade slated for renovation, exhibiting 
a slightly antiquated style. Upon triggering the framework, the analysis module automatically extracts its 
feature vectors. For example, {Window-to-wall ratio: 0.25, symmetry index: 0.85, ornamentation index: 0.7,… 

XAI Recommendations and Explanations: This feature vector is fed into a decision tree model. The model 
outputs a recommendation: “Neoclassical style, 93% confidence.” More importantly, the system reveals its 
decision-making process to the designer. The simplified logic shown in Figure 2(b) is as follows: “Since the 
symmetry index > 0.8, the ornamentation index > 0.6 and the window-to-wall ratio < 0.4, the recommended 
style is ‘Neoclassical’.” 

User Decision & Automated Generation: This explicit explanation enables designers to comprehend and 
trust the AI’s suggestion. Upon designer confirmation, the parametric generation engine is activated. The script 
automatically executes a series of operations based on the “Neoclassical” style rulebook, such as replacing 
windows with arched ones, adding classical columns and eaves lines, and adjusting wall materials. The entire 
process takes approximately 3 minutes, resulting in the remodeled model shown in Figure 2(c), which features 
a unified style and rich details. 

 

Figure 2: Case study workflow. (a) Prerenovation façade;  (b) automatically generated postrenovation façade 

 

4.2 Discussion 

4.2.1 Interpretation of the Results 
The quantitative results and case studies in this research jointly validate the effectiveness of the proposed 

framework. Significant efficiency gains demonstrate the value of automated workflows, whereas high-
accuracy AI recommendation performance confirms the feasibility of data-driven decision-making. More 
profoundly, this study seamlessly integrates both aspects into a unified, user-friendly tool. 

4.2.2 Practical Value of Explainability 
The core assertion of this study is that in architectural design, the “explainability” of AI tools is equally 

important-if not more so-than their “accuracy.” Unlike “black-box” generative AI models that produce outputs 
while concealing their processes, this framework enables effective communication between humans and AI by 
revealing the explicit logic of decision trees. Designers are no longer passive recipients of “magically” 
generated outcomes but can actively comprehend, evaluate, and validate AI suggestions. This transparency 
significantly enhances designers’ trust in the tool, transforming AI’s role from that of a potential competitor 
into that of a collaborative, trustworthy intelligent assistant that fosters meaningful human-involved design 
processes. 

4.2.3 Limitations and Future Research Directions 
As an exploratory endeavour, this study has certain limitations while also opening new avenues for future 

research: 

(1) First, regarding the expansion and dynamic learning of the style library, the current model’s training 
dataset only includes a limited number of architectural styles. Future work will focus on expanding the model 
style library by collecting and annotating more diverse data while exploring online learning or incremental 
learning methods to enable the model to continuously optimize and adapt to new style trends on the basis of 
designer feedback. 
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(2) Second, enhancing geometric capabilities is essential: the current feature extraction script primarily 
targets linear geometry. Its analytical capacity is limited for facades featuring complex surfaces or 
nonorthogonal forms. Future exploration could incorporate more advanced 3D model analysis techniques, such 
as graph neural networks (GNNs). The data-driven and representation-learning characteristics of deep neural 
networks enable them to extract morphological patterns from extensive existing traditional texture cases, 
generate texture layouts aligned with local urban aesthetics, and repair disrupted urban textures. 5 

(3) Another area for improvement lies in aesthetics and performance. Current recommendations focus 
primarily on aesthetics and morphological characteristics. A more ambitious future direction involves 
integrating building performance analysis (energy consumption, solar exposure, structural efficiency, etc.) into 
the recommendation engine. 

This transforms the problem from single-objective style classification to a multiobjective, comprehensive 
performance optimization challenge. Consequently, designers will be empowered to deliver sustainable façade 
improvement solutions that are both aesthetically pleasing and high performing. 

5. Conclusion 
This study successfully developed and rigorously validated an automated facade renovation and style 

recommendation framework for architecture, leveraging SketchUp Ruby scripts and explainable AI. The key 
findings demonstrate that the framework significantly enhances the facade modeling efficiency while 
substantially improving the style recommendation accuracy. It achieves an intelligent closed-loop process-
from feature analysis to model generation-within a single design environment. 

The primary contributions of this research are twofold-fold. First, it offers a novel approach bridging the 
gap between AI-driven analysis and parametric automation within mainstream design platforms, providing 
efficient, reliable, and user-friendly technical support for architectural heritage preservation and urban renewal. 
Second, of greater theoretical value, this study represents a successful application of explainable AI (XAI) 
principles in architectural design tool development. This demonstrates that through careful model selection 
and system design, intelligent yet transparent design assistance tools can be constructed, thereby enhancing 
trust and efficacy in human‒machine collaboration. 

Despite these positive outcomes, room for improvement remains in expanding the style library’s breadth 
and enhancing complex geometric processing capabilities. Future research will focus on expanding AI model 
training datasets and exploring integration with more advanced analytical techniques such as graph neural 
networks. In the long-term, combining aesthetic recommendations with architectural performance optimization 
is expected to evolve into a more comprehensive decision support system. This will support sustainable urban 
regeneration, ultimately advancing the digitalization and intelligent transformation of architectural design and 
construction processes while achieving harmonious integration with cultural heritage preservation. 
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Appendix A: SketchUp Ruby Script Core Logic Pseudocode 
# Retrieving the current model 
model = Sketchup.active_model 
 
# Start an operation (with undo capability) 
model.start_operation(“Replace Windows”) 
 
# Get all entities in the model 
entities = model.entities 
 
# Search for every instance of the “Old_Window” component among all entities 
entities.each do |entity| 
if entity.is_a? (Sketchup::ComponentInstance) && entity.definition.name == “Old_Window” 
 
# 1. Get the position and orientation of the old window 
transformation = entity.transformation 
 
# 2. Remove the old window 
entity.erase! 
 
# 3. Find the new window component by name in the component library 
new_window_def = nil 
model.definitions.each do |def| 
if def.name == “Modern_Window_Component” 
  new_window_def = def 
  break 
end 
end 
 
# 4. Place the new window at the exact position of the old window 
if new_window_def 
entities.add_instance(new_window_def, transformation) 
end 
end 
end 
# End operation 
model.commit_operation 
 
# Display a prompt on the interface 
UI.messagebox(“Window replacement complete!”) 

(This section provides a key function pseudocode for the Ruby script used in feature extraction and 
parameterized generation, accompanied by detailed annotations to ensure reproducibility of the research.) 
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