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Abstract 

This paper explores the application and development of artificial intelligence in autonomous driving and 

analyses its current status, challenges, and future trends. Autonomous driving systems integrate multiple core 

technologies in vehicle perception and driving decision-making, achieving a leap from assisted driving to 

commercial deployment. Leveraging emerging methods such as machine learning, deep learning, and 

reinforcement learning, autonomous driving systems have significantly improved perception accuracy, 

decision-making capabilities, and environmental adaptability. However, current autonomous driving systems 

still face technical bottlenecks, including insufficient model generalizability and low training efficiency, 

while also encountering legal and societal challenges such as data privacy protection, accident liability 

determination, and algorithmic ethical biases. In the future, high-precision multimodal perception 

architectures, edge computing deployment solutions, and the construction of a vehicle‒road collaborative 

ecosystem will be key breakthrough directions for enabling fully autonomous driving across all scenarios. 
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1. Introduction 

As a core component of future intelligent transportation systems, autonomous driving technology has 

gradually attracted the attention of the public. Its development not only transforms traditional driving models 

but also has led to revolutionary changes in various fields, such as modern transportation, logistics, and 

urban management. Artificial intelligence (AI), as one of the key enablers of autonomous driving, provides 

advanced perception, decision-making, control, and optimization capabilities, offering crucial support for the 

advancement of autonomous driving. 

By enhancing computational power and expanding algorithmic applications, AI technology has 

continuously driven innovation in autonomous driving systems. Across multiple stages of autonomous 

driving, AI algorithms play a pivotal role in pushing the technology toward higher levels of automation. 

Although existing research focuses primarily on individual technical aspects and lacks a systematic analysis 

of AI technology frameworks and industrial implementation, the challenges in technology, regulations, and 

ethics remain significant. Nevertheless, with ongoing research and continuous efforts from various sectors, 

achieving fully autonomous driving is gradually becoming a reality. 
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This paper innovatively discusses the topic from three dimensions: technological evolution, industrial 

bottlenecks, and societal impact. A review of the latest advancements in artificial intelligence within the field 

of autonomous driving aims to reveal key technological pathways and provide both theoretical foundations 

and practical insights for building safe and reliable autonomous driving systems. 

2. Overview of Autonomous Driving Technology 

2.1 Definition and Development of Autonomous Driving 

Autonomous driving technology refers to an integrated intelligent system that enables a vehicle to 

autonomously complete environmental perception, behavioral decision-making, and vehicle control without 

requiring continuous intervention from a human driver. This is achieved through core technologies such as 

multisensor fusion, environmental perception, path planning, and decision control. According to the J3016 

standard established by the International Society of Automotive Engineers (SAE), autonomous driving 

technology is classified into six levels (L0--L5), with L3 and above systems capable of performing all 

dynamic driving tasks under specified conditions. L5 represents the fully autonomous driving capability. The 

technical framework encompasses four key components: the environmental perception module (LiDAR, 

cameras, millimeter-wave radar, etc.), positioning and mapping module (high-precision maps, SLAM 

technology), decision planning module (behavior prediction, path planning), and vehicle control module 

(steering control execution system). 

Research into autonomous driving can be traced back to the 1950s, when studies focused primarily on 

achieving basic driver assistance systems. In 1984, a research team from Karlsruhe University in Germany 

launched the SV-1 autonomous vehicle prototype, which uses LiDAR for environmental perception. In 1994, 

Carnegie Mellon University's Navlab project successfully developed the first autonomous vehicle capable of 

navigating independently. In 1995, Stanford University's Stanford Cart project demonstrated a vehicle that 

could autonomously avoid obstacles in dense environments. In 2004, the U.S. Defense Advanced Research 

Projects Agency (DARPA) held the first autonomous driving challenge. In 2005, the winning team of the 

DARPA Challenge successfully completed a full-length autonomous drive. 

In the 2010s, Google introduced the first autonomous vehicle prototype, and Tesla launched an autopilot 

system with autonomous driving capabilities, pushing the commercialization of autonomous driving 

technology. In 2016, Uber began trial operations of autonomous taxis, further advancing the application of 

autonomous driving in the shared mobility sector. In 2020, Waymo became the first company to launch 

Level 4 autonomous taxis globally, marking the beginning of fully autonomous driving commercialization. 

Today, autonomous driving technology has been deployed worldwide and is gradually entering a broader 

commercialization phase. 

2.2 Components of Autonomous Driving Systems 

A complete autonomous driving system typically consists of four core components: the perception layer, 

decision layer, execution layer, and communication layer. These layers work together to achieve the various 

functions of autonomous driving. 

The perception layer is the foundation of the autonomous driving system. It collects data from the 

surrounding environment through various sensors (such as LiDAR, millimeter-wave radar, cameras, and 

ultrasonic sensors) and uses computer vision technologies (such as semantic segmentation, object detection, 

and lane line recognition) and environmental modelling (such as high-precision maps and SLAM) to help the 

system understand complex spatial structures and vehicle positions. This provides data support for 

subsequent decision-making and execution. 

The decision layer plans and makes decisions about the vehicle's actions on the basis of perception data. 

This layer involves multiple complex algorithms and models to complete three key tasks: (1) Path planning: 

Considering factors such as road type, traffic signals, and potential obstacles, it calculates the optimal driving 

route for the autonomous vehicle. (2) Behavior prediction: Predicting the acceleration, deceleration, and 

steering actions of surrounding vehicles on the basis of traffic conditions. (3) Real-time decision-making: 
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Decision algorithms such as deep reinforcement learning, model predictive control (MPC), and game theory 

are used to make immediate responses. 

The execution layer translates decisions into specific actions to ensure that the vehicle follows the 

planned path. This layer consists of two key components: (1) Vehicle control system: This layer regulates the 

vehicle's acceleration, braking, and steering through control algorithms such as PID control and fuzzy control. 

(2) Actuators: Actuators such as the electric steering system and electronic braking system receive control 

commands and execute precise movements to achieve vehicle motion. 

The communication layer ensures real-time information exchange and updates between the vehicle, 

other vehicles, road infrastructure, and cloud platforms. Vehicle-to-everything (V2X) communication 

technology enables the vehicle to exchange information with other vehicles, traffic lights, and road cameras, 

enabling information sharing and collaborative control. Cloud platforms store vehicle operation data, and 

real-time communication between the vehicle and the cloud platform helps update maps, optimize decision 

algorithms, and enable intervehicle collaboration. 

3. Application of Artificial Intelligence in Autonomous Driving 

AI technology has become an indispensable part of autonomous driving systems. It not only makes 

autonomous driving smarter and more autonomous but also improves the system's safety and efficiency. 

3.1 Computer Vision and Deep Learning 

Computer vision technology enables vehicles to understand the image information of the surrounding 

environment and is one of the key technologies in the perception layer. By using cameras, autonomous 

driving systems can capture real-time image data and recognize surrounding traffic signs, lane markings, 

pedestrians, other vehicles, and obstacles. Computer vision tasks typically include object detection, image 

classification, semantic segmentation, and depth estimation, all of which provide crucial perception data for 

the decision layer of autonomous driving. 

The basic principle of computer vision is to extract useful feature information from images through image 

processing and analysis and then classify, recognize, and locate these features. Taking object detection as an 

example, the process begins with preprocessing the raw image, such as denoising, color space conversion, 

and image enhancement, to improve the accuracy of subsequent algorithms. Then, convolutional neural 

networks (CNNs), which represent the target objects in latent space, are used to extract feature vectors from 

the image. Finally, pretrained deep learning models are used to recognize and locate targets such as 

pedestrians, vehicles, traffic signs, and traffic signals in real-time images. Accurate recognition of these 

targets is the foundation for decision-making in autonomous driving systems. 

Deep learning, particularly convolutional neural networks (CNNs), has become the main technology for 

solving computer vision tasks. The structure of a CNN typically includes convolutional layers, pooling layers, 

and fully connected layers. In the convolutional layer, the input image is convolved with multiple filters to 

extract different visual features, such as edges, textures, and corners. The pooling layer is used to reduce the 

dimensionality of the convolution results, retaining the most significant features, which reduces the 

computational load and prevents overfitting. Through multiple layers of convolution and pooling, features of 

the input image are progressively extracted, resulting in a set of feature vectors that represent the content of 

the image. The fully connected layer combines the features extracted from the convolution and pooling 

layers and outputs the final prediction result. 

CNNs can automatically learn image features from a large amount of labelled training data without the 

need for manually designed feature extractors, which makes them perform well in tasks such as image 

classification and object detection. Tesla's full self-driving (FSD) system uses the HydraNet multitask 

architecture, with a backbone network based on an improved EfficientNet model. This model reduces the 

computational requirements by 75% through depthwise separable convolutions, achieving an end-to-end 

inference speed of 8 ms on the NVIDIA DRIVE platform. Baidu's Apollo system innovatively applied a 3D-

CNN architecture in complex intersection scenarios. This network combines multiview camera data with 
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LiDAR point clouds into spatiotemporal voxels to construct a 360-degree 3D obstacle model in real time. In 

the Yizhuang testing area of Beijing, this system achieved a pedestrian recognition accuracy of 98.5% at 

intersection crossings, a 21% improvement over traditional 2D detection methods, effectively solving the 

problem of missed detections caused by vehicle occlusion. 

3.2 Sensor Fusion and Multimodal Perception 

Autonomous driving systems are typically equipped with multiple types of sensors, such as cameras, 

millimeter-wave radar (Radar), and LiDAR. Each sensor has its own specific advantages, such as cameras 

providing low-cost, rich scene information, millimeter-wave radar performing excellently in adverse weather 

conditions, and LiDAR generating high-precision 3D point cloud images. Considering the limitations of a 

single sensor in complex environments, autonomous driving systems usually employ sensor fusion 

techniques to integrate data from multiple sensors. This helps overcome the shortcomings of individual 

sensors, improves overall perception accuracy, and enhances the system's robustness and reliability in 

handling exceptional situations. 

One challenge faced by multimodal data fusion is the issue of data alignment and consistency. Data from 

different modalities have different feature dimensions and representations, and their error distributions also 

vary, making it difficult to efficiently fuse data and improve data quality in practical applications. The 

Kalman filter is a commonly used data fusion algorithm. Its core idea is to combine prior state information of 

the system with measurement data, performing recursive prediction and correction to gradually optimize 

system state estimation. In multimodal data fusion, the Kalman filter is used to weight and combine data 

from different sensors, eliminating noise and errors from individual sensors. 

High-definition maps (HD maps) are crucial for multimodal perception. HD maps typically contain 

precise geometric details of roads, lane markings, traffic signs, road surface conditions, intersection shapes, 

slopes, and other information. In complex environments such as cities or highways, autonomous driving 

systems combine GPSs, IMUs, and HD maps. The GPS provides the vehicle's approximate location, the 

IMU offers information about the vehicle's motion state, and the HD map provides detailed information 

about the road and environment. By integrating these data, the system can eliminate GPS signal errors and 

achieve centimeter-level precision in navigation. 

With the development of deep learning, models such as convolutional neural networks (CNNs), deep 

neural networks (DNNs), and long short-term memory networks (LSTMs) have also been applied to 

multimodal data fusion. Through pretraining and fine-tuning, these models can accept raw data from 

different modalities as inputs and extract more useful features for analysis. 

3.3 Reinforcement Learning and Decision Making 

Reinforcement learning (RL) is a machine learning method that learns optimal strategies through 

interaction with the environment. Unlike traditional supervised learning, RL does not rely on labelled 

training data but instead learns how to make optimal decisions in specific situations through the interaction 

between the agent (in the case of autonomous driving, the vehicle) and the environment, using feedback 

mechanisms (rewards and penalties). The result of each decision influences future states, and the agent 

continuously adjusts its strategy on the basis of reward and penalty signals, eventually learning how to 

maximize cumulative rewards in a complex environment. 

In autonomous driving systems, reinforcement learning is widely applied in the decision-making and 

planning stages. In uncertain and dynamic traffic environments, vehicle decisions rely not only on static road 

information and traffic signs but also on the behavior of other traffic participants, changes in road conditions, 

and real-time traffic flow. Reinforcement learning offers a flexible, adaptive approach to decision-making 

that can dynamically adjust on the basis of environmental changes. 

The successful application of reinforcement learning in autonomous driving largely depends on deep 

learning models, particularly their ability to process high-dimensional input spaces such as images and point 

cloud data. By combining deep reinforcement learning (DRL), autonomous driving systems can extract 

features from large amounts of raw data and make decisions on the basis of these features. DRL introduces 
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deep neural networks, such as deep Q networks (DQNs), to automatically learn complex state-action value 

functions, thereby handling more complex environments and tasks. The deep deterministic policy gradient 

(DDPG) is also a commonly used reinforcement learning algorithm. It combines the actor‒critic architecture 

with the DQN and uses experience replay buffers and target networks to improve learning stability and 

efficiency. This method is particularly suitable for problems in continuous action spaces, such as adjusting 

vehicle speed or selecting steering angles, making it widely applied in autonomous driving. 

Additionally, time series-based deep learning models, such as long short-term memory (LSTM) networks 

and gated recurrent units (GRUs), are applied to dynamic object behavior prediction tasks. LSTM and the 

GRU can capture long-term dependencies in time series data, analyse historical data and combine them with 

current states to predict the future behavior of other traffic participants. These predictions provide real-time 

decision support to autonomous driving systems, enabling the planning of safe paths during the decision-

making phase and preventing conflicts with dynamic targets. 

4. Development Status and Challenges 

4.1 Visual Model and Detection Algorithm Optimization 

The perception layer of autonomous driving systems extensively utilizes detection algorithms based on 

visual models. The detection accuracy and computational efficiency of these algorithms are two important 

indicators of system performance. Optimizing models and algorithms to improve accuracy and reduce 

latency is a key issue that recent research aims to address. 

With the introduction of the attention mechanism (Vaswani et al., 2017), deep learning models based on 

the transformer architecture have demonstrated stronger feature extraction capabilities and versatility. 

Madake et al. (2024) incorporated the attention mechanism into deep neural networks, which, compared with 

pretrained models, improved the accuracy of detecting small objects such as traffic lights and pedestrians. 

Self-supervised learning enables models to learn features from unlabelled data, which is highly important in 

the autonomous driving domain, where data annotation is challenging. Xu et al. (2024) focused on LiDAR-

camera 3D perception models and proposed a self-supervised deep learning framework that introduces a 

unified pretraining strategy for multimodal data, effectively enhancing the model's ability to recognize 

targets in the presence of unlabelled data. To improve the performance of the visual system in complex 

environments, related research has attempted to enhance model generalization and achieve multimodal data 

fusion. Jiang et al. (2024) proposed a complementary network, MCNet, that integrates RGB modality data 

and thermal modality data. This network achieves complementary and flexible adjustments between color, 

texture, and contour information, ensuring high detection accuracy even when one modality's information is 

difficult to perceive, thus improving the system's robustness in complex weather conditions. For visual 

perception in autonomous driving under nighttime or low-light conditions, generative adversarial networks 

(GANs) have become a feasible solution. One application of generative models is image enhancement, 

which can effectively restore the details of low-resolution images. Pham et al. (2020) proposed the deep 

retinal neural network DriveRetinex, inspired by the theory of retinal image capture. This network is divided 

into two subnetworks, one for color image decomposition and the other for light level enhancement, 

improving object detection accuracy under low light conditions. 

Despite the significant progress in visual model research for autonomous driving, many challenges 

remain. For example, the method of using GANs for image enhancement has limitations when handling 

complex scenes. How to implement image enhancement in dynamic environments and improve real-time 

performance and stability remains a pressing issue. Autonomous driving systems may encounter unexpected 

events, and since these events occur infrequently in actual road scenarios, existing visual models still 

perform poorly when faced with such events, even with the application of data augmentation and self-

supervised learning methods. Future research needs to find more effective ways to improve the model's 

adaptability. Real-time performance is a core requirement of autonomous driving systems, but deep learning 

models typically consume a large amount of computational resources, which makes it difficult to meet real-

time demands in complex road conditions. How to effectively utilize lightweight neural networks and 
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hardware acceleration methods to further reduce computational consumption is an area that warrants 

attention. 

4.2 Acceleration of Reinforcement Learning Training 

In dynamic and complex traffic scenarios, deep reinforcement learning (DRL) has become a core 

component of the decision-making layer in autonomous driving systems because of its powerful decision-

making capabilities. In recent years, much research has focused on how to improve the training efficiency of 

reinforcement learning algorithms, reduce the search space during training, and ensure the safety of the 

training process. 

One challenge in reinforcement learning model training lies in the need to use real-world data as input to 

simulate the agent's exploration process. The amount of input data and its compliance with real-world 

physical laws can significantly affect the reliability of the model's decisions. Wu et al. (2023) proposed a 

reinforcement learning method based on uncertainty-aware models, which builds an environment model with 

uncertainty assessment capabilities for virtual interaction. This method outperforms both model-free and 

model-based reinforcement learning in terms of learning efficiency and performance. Imitation learning is an 

effective method for accelerating training, typically involving simulating human driving behavior and using 

expert demonstration data. This greatly reduces the need for random exploration. Coelho et al. (2024) 

reported that existing algorithms rely on offline demonstrations and that the strategies learned may not be 

applicable in the latest scenarios. To address this, this paper introduces a policy network that outputs two 

standard deviations for exploration and training, effectively bridging the distribution gap between the 

demonstration environment and the real environment. Hu et al. (2024) proposed a safety reinforcement 

learning algorithm based on short-term constraints, aiming to enhance both short-term state safety during 

exploration and overall decision safety. The method adds safety violation costs to the training objective, 

significantly reducing the likelihood of the agent taking dangerous actions. 

Although reinforcement learning holds great potential in autonomous driving decision-making, deep 

reinforcement learning models have not yet been widely applied in commercial autonomous driving systems. 

The fundamental reason is the difficulty in balancing training speed, decision quality, and computational 

efficiency. The decision quality of reinforcement learning relies on high-quality data, and constructing a 

training set that can simulate all possible situations in complex and dynamic real-world traffic environments 

remains challenging. On the other hand, even when simulated and demonstration data are used, the training 

costs of models can range from several hours to days. Some models that use complex frameworks (such as 

the actor-critics) often have response times in the range of hundreds of milliseconds or even seconds. Finding 

the optimal balance among these three factors—training speed, decision quality, and computational 

efficiency—is an ongoing challenge that needs continuous optimization and long-term attention. 

5. Future Outlook 

The future of autonomous driving is full of innovation and challenges. In the coming years, AI will play 

an even more profound role in multiple aspects of autonomous driving, pushing the technology toward 

higher levels of automation and intelligence. 

5.1 High-Precision Perception and Intelligent Decision-Making 

With the help of high-precision sensors and more advanced perception algorithms, future autonomous 

driving systems will have a more accurate understanding of the surrounding environment. The continuous 

optimization of visual models and detection algorithms, combined with further applications of transfer 

learning and self-supervised learning techniques, will improve the system's adaptability in adverse weather 

conditions, such as rain, night-time driving, or fog. This will enhance driving safety. Currently, the main 

challenges faced by reinforcement learning are training efficiency and real-time decision responsiveness. In 

the future, distributed training, multilevel training strategies, and ensemble learning may be employed to 

accelerate model training. By using virtual training environments for large-scale simulations and combining 
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expert data with real-time data from the real world, autonomous driving systems can quickly learn and 

optimize driving strategies to handle unexpected events. 

5.2 Efficient Computing Architecture and Edge Computing 

Currently, most autonomous driving systems rely on cloud computing or high-performance onboard 

computing platforms to process data. While cloud computing provides immense processing power, it faces 

limitations in terms of real-time responsiveness and bandwidth. In the future, edge computing will play a 

crucial role in autonomous driving by processing data and making decisions locally within the vehicle. This 

reduces the dependence on remote servers, decreases the data transmission latency, and enables real-time 

responses. The collaboration between the cloud and edge computing will achieve the best balance in 

processing power and data storage. To meet the increasing demands of onboard computing, AI algorithms 

will focus more on computational efficiency, with lightweight and highly parallel neural network models 

becoming mainstream. 

5.3 Intelligent Vehicle Coordination and Vehicle-to-Infrastructure Collaboration 

The future intelligent transportation system will not operate as a single vehicle acting independently but 

as a multivehicle, vehicle-to-infrastructure (V2X) coordinated system. Advancements in V2X technology 

will enable real-time communication of road conditions between vehicles and infrastructure, facilitating high 

levels of intelligent collaboration. This will increase road traffic efficiency and reduce accidents, especially 

at complex intersections and highways. 

5.4 Legal and Ethical Issues 

AI's application in autonomous driving presents vast potential, but to achieve widespread 

commercialization, the development of relevant laws and regulations still needs to be improved. In the future, 

legal frameworks will likely evolve alongside the development of autonomous driving, providing clearer 

standards and guidelines for technology implementation. Additionally, ethical issues, such as the "trolley 

problem" (the issue of selective harm), remain a major concern in society. Finding a balance between 

technology and ethics to improve public acceptance will become a critical direction for future development. 

6. Conclusion 

This paper provides an in-depth exploration of the application and development of artificial intelligence 

(AI) in the field of autonomous driving, systematically analysing its innovative achievements and practical 

applications in perception, decision-making, and coordination. Through research on key technologies such as 

computer vision, sensor fusion, and reinforcement learning, this paper reveals how AI drives autonomous 

driving technology toward higher levels of automation. The findings indicate that AI technology has not only 

significantly improved the environmental perception accuracy and decision-making intelligence of 

autonomous driving systems but also provided effective support for solving dynamic problems in complex 

traffic scenarios. 

However, there are still some shortcomings in the current research. For example, the robustness of deep 

learning models in handling extreme weather conditions and unforeseen events needs further improvement, 

and the training efficiency and real-time responsiveness of reinforcement learning algorithms have not been 

fully addressed. Additionally, the widespread application of autonomous driving technology still faces 

challenges related to legal regulations and ethical issues. 

Future research should focus on further optimizing perception algorithms and decision models, enhancing 

the collaboration between edge computing and cloud computing, and advancing vehicle-to-infrastructure 

coordination technologies. At the same time, efforts should be made to strike a balance between technology 

and ethics and improve relevant laws and regulations to increase societal acceptance of autonomous driving 

technology. 
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