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Abstract 

The goal of infrared and visible image fusion is to combine complementary information from infrared and 

visible images of the same scene to generate a high-quality composite image that integrates the advantages of 

both modalities. Although many current fusion methods achieve satisfactory results, they still suffer from 

limitations such as insufficient feature resolution extraction from infrared images and inadequate texture 

information extraction from visible images. This paper proposes a novel fusion method designed to enhance 

the resolution, detail preservation, and visual consistency of the fused image. The method integrates multi-

window detail enhancement with multi-layer residual connections, employing a detail selector and a global 

feature extractor to separately capture high-frequency and low-frequency features from the infrared and 

visible images. Experimental results demonstrate that, compared to existing approaches, the proposed 

method achieves superior fusion quality and better preservation of image details, providing higher-quality 

data for subsequent image processing tasks. 
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1. Introduction 

In the field of modern information technology, image fusion has gradually become a key technology for 

enhancing the value and applicability of images (Park et al., 2003). Infrared and visible image fusion, as an 

important branch of image fusion technology, has attracted considerable attention due to its unique 

advantages in multimodal information integration (Toet, 1989). Visible images, with their rich color and 

detailed information, are widely used in many fields, while infrared images, owing to their imaging 

capabilities in low-light or special conditions, have demonstrated unique value in military and industrial 

applications (Ma, Ma, et al., 2019). To address these issues, various infrared and visible image fusion 

methods have been proposed to combine the strengths of both modalities to generate images with richer 

information. These methods show great potential in enhancing the visual quality, usability, and application 

scope of fused images (Pizurica et al., 2003). For example, Zhang et al. (2020) proposed a convolutional 

neural network (CNN)-based fusion framework that effectively fuses infrared and visible images and 

achieved excellent performance on multiple datasets. Zhao et al. proposed MetaFusion (Zhao et al., 2023), 

which further introduced a meta-feature embedding strategy guided by specific tasks to improve cross-modal 

semantic alignment. Generative Adversarial Networks (GANs) have also been leveraged to enhance the 
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realism and visual quality of fused images. In 2019, Ma et al. proposed FusionGAN (Ma, Yu, et al., 2019), 

which adopts a generator–discriminator architecture to improve the naturalness of the fusion results. 

However, these deep learning-based methods also face challenges such as high model complexity and the 

need for extensive computational resources and training data. Besides deep learning approaches, traditional 

image fusion techniques continue to evolve. For instance, Liu et al. (2015) proposes a general image fusion 

framework based on multi-scale transform and sparse representation, which aims to effectively extract and 

fuse the key information of multi-source images by combining the advantages of multi-scale analysis and 

sparse representation, so as to improve the quality and performance of fusion images. Zhou et al. (2023) 

proposed to achieve low latency and low power motion recognition by performing computation directly 

within the sensor. 

Furthermore, researchers have conducted extensive evaluations and comparisons of image fusion 

algorithms to identify the most suitable methods for specific applications. These assessments help clarify the 

strengths and weaknesses of different approaches and provide guidance for future research directions. 

2. Method 

This paper proposes a model composed of four core components: an encoder, a decoder, a local feature 

extractor—Selective Detail Integrator (SDI), and a global feature extractor—Global Feature Extractor (GFE). 

This architecture aims to achieve efficient fusion of infrared and visible images by combining the strengths 

of Transformer and traditional convolutional neural networks, as illustrated in Fig. 1. The encoder employs 

Transformer blocks inspired by the Vision Transformer (ViT) architecture to perform feature extraction and 

encoding. The self-attention mechanism of the Transformer effectively captures long-range dependencies in 

the images, which is particularly crucial for the fusion of information from infrared and visible modalities. 

Through multiple layers of Transformer blocks, the encoder progressively extracts multi-scale features from 

both infrared and visible images, providing rich feature representations for subsequent fusion 

steps.Following feature extraction, the local and global feature extractors undertake distinct functions.  

The SDI module, based on multi-window attention and residual connections, performs multi-scale detail 

extraction and selective enhancement on the input features, thereby supplying high-quality detail information 

for subsequent super-resolution reconstruction. In contrast, the GFE focuses on extracting low-frequency 

information, preserving the global structure and large-scale visual context of the images. While 

convolutional neural networks excel at capturing local details, Transformers effectively model global 

features, offering greater flexibility and accuracy in information extraction for image fusion. Through the 

cooperative operation of these two extractors, the model efficiently processes both fine details and global 

information, ensuring that the fusion results are both detailed and globally consistent. To guarantee accurate 

feature representation and fusion across different modalities, a combination of loss functions is adopted, 

including gradient loss, mean squared error loss, and structural similarity loss. 

Figure 1: Overall network diagram 
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3. Experiment 

3.1 Datasets 

We trained our model on the training set of the MSRS (Multispectral Remote Sensing) dataset. Each 

image pair in the training set consists of an infrared image and its corresponding visible image, covering a 

variety of environments and scenes. By utilizing this dataset, we enable the model to perform image 

classification tasks under diverse conditions, thereby enhancing its generalization capability and 

classification accuracy. We selected the TNO (Toet, 2017) and RoadScene (Xu et al., 2022) datasets to 

conduct a series of experimental evaluations. 

The TNO dataset contains multi-spectral remote sensing image pairs, covering a variety of different 

ground object types and complex environments, which is highly challenging. The RoadScence dataset 

mainly contains image data of road scenes, and focuses on testing the image fusion performance of the 

model under complex backgrounds, especially for applications in the field of traffic monitoring and 

autonomous driving. In this experiment, we evaluate the performance of the model in terms of image quality, 

fusion effect, and classification accuracy, respectively, and quantitatively compare our model with existing 

advanced methods to show its advantages in multi-source remote sensing data fusion. The experimental 

results show that the optimized model is superior to the traditional method in multiple evaluation indicators, 

which verifies its effectiveness and superiority in practical applications. 

3.2 Implementation Details 

Before training, we randomly crop all training samples, cropping each pair of images into patches of size 

128×128 to fit the network input size. This preprocessing method helps to enhance the generalization ability 

of the model and reduce the computational overhead during training. In the training process of the model, we 

adopted a training period of 120 epochs and divided the training into three stages in order to gradually 

optimize the performance of the model. In order to ensure the stability of training, we set the batch size to 4, 

which means that 4 images are used for training in each iteration, which can effectively control the 

occupation of video memory and ensure the stability of gradient update. For the optimizer, the AdamW 

optimizer was chosen, which combines the advantages of Adam and Weight Decay and is better able to 

handle the overfitting problem during training. The initial learning rate is set to 10-4, and the learning rate 

decay is performed every 20 iterations with a decay factor of 0.5. This learning rate scheduling strategy helps 

to achieve finer optimization later in training and avoid overfitting. All experiments are performed under the 

PyTorch framework, which leverages its powerful deep learning support for model training and debugging. 
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3.3 Evaluation Metrics 

To objectively assess the performance of our proposed infrared and visible image fusion method, we 

adopt a comprehensive set of widely used evaluation metrics. These metrics are designed to quantify 

different aspects of fusion quality, including information richness, structural similarity, visual fidelity, and 

detail preservation. Below is a detailed description of each metric used in our experiments. Entropy measures 

the amount of information contained in the fused image. Standard deviation reflects the contrast and clarity 

of the fused image. Spatial frequency evaluates the overall activity level or texture richness in the image. It 

combines horizontal and vertical frequency components to reflect the sharpness and edge information. SCD 

measures the correlation difference between the source images and the fused image. Mutual information 

quantifies the amount of information shared between the fused image and each source image. VIF evaluates 

how well the fused image preserves the visual information perceived by the human eye. It considers the 

distortion of natural scene statistics and provides a perceptual measure of fusion quality. These metrics 

collectively provide a multi-dimensional evaluation of fusion performance, allowing us to compare our 

method with existing approaches in terms of both objective quality and subjective visual perception. 

3.4 Experiment Results 

 To ensure the reliability and comprehensiveness of our evaluation, we compared our method with several 

state-of-the-art image fusion models, including DATFuse (Tang et al., 2023), DSFusion (K. Liu et al., 2024), 

SDCFusion (X. Liu et al., 2024), SeAFusion (Tang et al., 2022), IFCNN (Zhang et al., 2020), UNFusion 

(Wang et al., 2022), and GAN-FM (Zhang et al., 2021). These models represent advanced approaches in the 

current image fusion field, encompassing various techniques and frameworks. For example, DATFuse and 

DSFusion adopt adaptive and multi-scale fusion strategies, respectively, aiming to optimize detail 

preservation and contrast enhancement; SDCFusion leverages structural content differences to improve 

fusion performance; SeAFusion and IFCNN focus on applying deep learning models to multisource remote 

sensing data fusion, further enhancing the quality and information fidelity of fused images; UNFusion 

employs convolutional neural networks for image fusion, exhibiting strong learning capabilities; GAN-FM 

utilizes a generative adversarial network (GAN) framework to improve the visual quality and structural 

fidelity of fused images. By comparing with these models, we comprehensively evaluate the proposed 

method and further validate its advantages in infrared and visible image fusion. 

The fusion results on the TNO dataset are shown in Fig. 2, the quantitative results are shown as Tab1. The 

fusion results on the RoadScene dataset are shown in Fig. 3, the quantitative results are shown as Tab2, 

Blodface and underline show the best and second-best values, respectively. The experiments demonstrate 

that our method achieves excellent visual performance, effectively preserving both rich texture details and 

salient information. Meanwhile, the quantitative results also show promising outcomes. 

Figure 2: Qualitative comparison on 02 from TNO dataset 

 

Figure 3: Qualitative comparison on FLIR_09624 from RoadScene dataset 
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Table 1: Quantitative results on TNO 

Methods EN SD SF SCD MI VIF 

DATFuse 6.85 27.56 9.58 1.50 3.13 0.62 

DSFusion 6.81 34.83 8.99 1.52 2.73 0.65 

GAN-FM 6.81 46.76 12.50 1.67 3.17 0.58 

SeAFusion 7.13 43.24 12.25 1.70 2.84 0.71 

IFCNN 6.85 37.08 12.95 1.78 2.05 0.62 

SDCFusion 7.06 39.96 12.09 1.73 2.47 0.64 

UNFusion 7.01 41.82 10.05 1.68 3.81 0.61 

Ours 7.08 43.45 13.36 1.65 2.01 0.72 

 

Table 2: Quantitative results on 50 random RoadScene data sets 

Methods EN SD SF SCD MI VIF 

DATFuse 6.73 32.29 11.18 1.29 2.07 0.62 

DSFusion 7.01 39.94 13.81 1.31 1.93 0.55 

GAN-FM 7.43 52.88 13.93 1.67 1.99 0.69 
SeAFusion 7.42 50.56 15.44 1.67 2.05 0.68 

IFCNN 7.10 39.21 14.59 1.61 1.95 0.62 

SDCFusion 7.28 44.96 16.21 1.67 1.90 0.65 

UNFusion 7.27 48.33 12.45 1.70 2.03 0.61 

Ours 7.33 49.84 15.93 1.68 2.28 0.69 

3.5 Experimental Analysis and Summary 

From the qualitative results in Fig. 2, it can be clearly observed that our method achieves superior 

performance in preserving salient objects—especially for human figures. While SDCFusion also performs 

well in highlighting salient targets, its edge definition is less sharp compared to our approach. On the TNO 

dataset, our method demonstrates strong performance across multiple evaluation metrics, particularly in 

Spatial Frequency (SF) and Visual Information Fidelity (VIF) . Although our method does not achieve the 

highest Entropy (EN) value, it ranks second only to SeAFusion, indicating that our fused images maintain 

rich information content while preserving fine details effectively. In Fig. 3, our method also shows clear 

advantages: the infrared-salient text remains highly legible, and the visual information of the signboard is 

well preserved, outperforming most competing methods visually. The quantitative results on the RoadScene 

dataset further confirm the superiority of our approach, especially in terms of SF and VIF scores, which 

reflect the enhanced texture richness and perceptual quality of the fused images. In summary, both 

qualitative and quantitative evaluations demonstrate that our method excels in preserving image details, 

enhancing structural clarity, and maintaining visual fidelity, making it a promising solution for infrared and 

visible image fusion tasks. 

4. Conclusion 

This paper proposes a local feature extractor SDI based on multi-window attention and residual 

connections, alongside a global feature extractor GFE that integrates convolutional operations with 

Transformer architecture. This design enables the fused image to effectively preserve salient target 
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information while simultaneously capturing rich texture details. Experimental results on multiple benchmark 

datasets demonstrate that our fusion method achieves superior performance in terms of image quality, detail 

preservation, and visual consistency compared to existing techniques. However, despite the outstanding 

performance across several datasets, there remain issues worthy of further investigation. Specifically, the 

relatively complex model architecture results in higher computational costs during training and inference, 

which may limit its applicability in scenarios requiring real-time processing. In future work, we plan to 

incorporate knowledge distillation techniques to enhance efficiency and performance. 
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