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Abstract 

Molecular dynamics (MD) simulation is constrained by the time and spatial scales as well as computational 

efficiency of traditional methods. While machine learning interatomic potentials (MLIPs) based on graph 

neural networks (GNNs) improve modeling accuracy, they suffer from insufficient short-range interaction 

modeling and lack of physical constraints. This paper proposes the DimezblNet model, which explicitly 

embeds the ZBL empirical potential function into the DimeNet framework. Through physically guided 

hybrid potential modeling, the description of short-range repulsive interactions is strengthened. On the 

MD17 dataset, the model reduces the mean absolute error (MAE) of energy and atomic force predictions for 

molecules like aspirin by 3.7%-5.3% compared to DimeNet. In the QM9 molecular property prediction task, 

the MAE of polarizability (α) is 0.0452 Å³, outperforming DimeNet (0.0469 Å³, a 3.6% improvement), and 

the MAE of dipole moment (μ) is 0.0273 D. Experiments show that combining physical priors with data-

driven strategies significantly enhances the model's generalization ability and interpretability in complex 

molecular systems. 
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1. Introduction 

The origin of molecular dynamics (MD) simulation can be traced back to the 1950s. In 1957, Berni Alder 

and Tom Wainwright first proposed it through computer simulations of gas-liquid-solid phase transitions in 

hard-sphere systems (Alder & Wainwright, 1957). 

Molecular dynamics simulation is a computer modeling technique that tracks the microscopic trajectories 

of atomic/molecular systems over time by numerically integrating Newton's Formulas of motion under 

predefined interaction potentials, thereby predicting the dynamic characteristics and mechanisms of materials 

or biomolecules at the atomic scale. It is widely applied in multiple scientific and engineering fields, such as 

biomedicine, materials science and engineering, energy and environment, chemistry and chemical 

engineering (Huang & Von Lilienfeld, 2021; Keretsu et al., 2020). 

Although molecular dynamics simulation has achieved remarkable results in many fields, traditional 

molecular dynamics simulation still faces key limitations. Constrained by the numerical integration 
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algorithm of classical Newtonian mechanics, traditional MD can only simulate processes on the nanosecond 

to microsecond time scale, struggling to cover phenomena with longer time scales like protein folding and 

material deformation. Moreover, due to the O(N²) complexity of inter-particle interaction calculations, 

simulation scales are mostly limited to nanometer systems, making it difficult to fully capture the behavior of 

macroscopic materials or complex biological systems. 

In recent years, with the development of machine learning, machine learning interatomic potentials 

(MLIPs) have emerged as a new approach to balance accuracy, universality, and efficiency in describing the 

energy of atomic assemblies for atomic simulations. MLIPs enable machine learning models to accurately 

predict the properties of chemical systems by leveraging training data generated from ab initio methods. The 

MLIPs approach combined with graph neural networks (GNNs) is currently a popular method for predicting 

interatomic potentials. GNNs do not require manual feature engineering but learn molecular representations 

entirely based on atomic types and coordinates. By aggregating information from adjacent nodes to update 

node features, GNNs model local interactions, demonstrating good scalability for large-scale molecular 

systems. Compared with traditional empirical force fields, models based on GNNs for potential energy 

surface modeling can achieve higher prediction accuracy by learning high-precision quantum mechanical 

data and exhibit better generalization across different molecules or structures. 

However, GNN-based models often lack physical interpretability and constraints, leading to suboptimal 

prediction accuracy. To address this, this study enhances the short-range interaction modeling capability of 

the DimeNet (Gasteiger et al., 2020) model by explicitly adding a ZBL (Ziegler & Biersack, 1985) potential 

calculation module. The ZBL potential is an empirical potential function describing repulsive interactions 

between atoms at short distances. DimeNet itself is designed to focus on angular information and medium-

range interactions, showing insensitivity to strong short-range repulsion. Introducing the ZBL potential 

explicitly compensates for this short-range interaction modeling, improving the model's prediction accuracy. 

2. Related Works 

GNNs are neural networks applied to graph data, leveraging graph structural information to enhance 

learning task performance. In quantum chemistry applications, graph neural networks typically use nodes to 

represent atoms and edges to represent connections between central atoms and neighboring atoms within a 

cutoff radius, forming an atomic graph. The message-passing mechanism of graph neural networks (Gilmer 

et al., 2017) serves as a general framework for graph neural networks, and such networks are commonly 

referred to as message-passing neural networks (MPNNs) (Gilmer et al., 2017). They aggregate information 

from neighboring atoms (including nodes and edges) to update the state of the central atom. After multiple 

iterations, the influence of more distant atoms on the central atom can also be considered, helping the model 

better learn the inherent features of the atomic graph. 

MPNN is a general framework for graph neural networks, replacing hand-designed distance and angle 

features with trainable operators dependent only on atomic charges and positions to directly learn 

representations of heterogeneous chemical environments from training data (Bartók et al., 2010; Gilmer et al., 

2017; Zhang et al., 2018). In the MPNN approach, SchNet (Schütt et al., 2017) first modeled 3D atomic 

systems as continuous-filter convolutional neural networks, encoding atomic distances through radial basis 

functions to enable efficient learning of quantum mechanical data. DimeNet innovatively introduced a 

directional message-passing mechanism, explicitly modeling directional interactions between atoms through 

bond angle embedding. GemNet (Gasteiger et al., 2021) further integrates four-dimensional diagonal tensors 

to achieve physically accurate modeling of higher-order interactions. 

Recently, graph neural network models based on rotational invariance constraints have gradually become 

the core framework in the deep learning field of interatomic interactions, owing to their symmetry 

preservation capabilities and high-precision modeling advantages. To satisfy the isotropy principle of 

physical systems, advanced models embed E(3) group symmetry (translation/rotation/reflection invariance) 

to maintain coordinate invariance in potential energy predictions, effectively avoiding the low prediction 

accuracy caused by ignoring symmetry in traditional methods. DimeNet takes atomic distances and bond 

angles as inputs, encodes angular information through spherical harmonic functions, and converts direction-
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sensitive intermediate features into rotation-invariant total energy outputs using invariant pooling (such as 

atomic summation). Based on DimeNet, GemNet introduces three-dimensional geometric features like 

dihedral angles, encodes directional information through spherical harmonic-Fourier basis functions, and 

ensures strictly rotation-invariant final energy predictions by leveraging symmetric aggregation and the 

inherent invariance of geometric functions. NequIP (Batzner et al., 2022), based on an E(3)-equivariant 

architecture, preserves direction sensitivity in intermediate layers through tensor features and equivariant 

convolutions, and finally achieves strictly rotation/translation invariance via scalar head aggregation, 

enhancing modeling accuracy while ensuring physical symmetry. 

This paper constructs a physically guided hybrid potential model by introducing an explicit ZBL potential 

calculation module into DimeNet. By explicitly constraining short-range strong repulsive interactions with 

physical potentials, it effectively compensates for extrapolation biases in the model caused by missing data 

in extreme short-range regions, avoids unphysical energy oscillations when nuclear distances are too close, 

further enhances the model's physical interpretability, and improves prediction accuracy. 

3. Introduction to the DimezblNet Model 

The implementation of a general message-passing layer represents each atom i  with an atomic 

embedding ih ∈ HR . Atomic embeddings are updated by passing messages along molecular edges in each 

layer. Messages are typically transformed based on edge embeddings   
ij

e ∈ eH
R  and summed over the 

neighbor atoms  j of the central atom i  ( ij N , where iN  is the neighborhood of atoms), as shown in 

Formula (1) and (2): 
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In Formula (1),  1l

iM


 is a message aggregation function. It collects information from the neighborhood 

iN  by using a function intf , and this function depends on the current atomic embeddings and the edge 

feature  ij
e .  ij

e  usually only depends on the inter - atomic distance, but it can also incorporate additional 

bond information. In Formula (2), updU  is a learnable message update function used to process the message 

aggregation in Formula (1). 

Since the DimezblNet model considers rotational invariance in the message-passing layer and achieves 

directional information transfer, new definitions are given to the aggregation and update functions of the 

message-passing layer, as shown in Formula (3): 
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Among them, ( )ji
RBFe  represents the distance between the central atom i  and the neighboring atom j . The 

radial basis representation of ijd  is shown in Formula (4): 
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Among them, RBF[1, , ]n N   represents the range of radial quantum numbers, cr is the cutoff radius, 

and sin
c

n
d

r

 
 
 

 is a sine function, representing the oscillatory behavior of the radial basis. ( , )kj ji
SBFa  is a two - 

dimensional representation based on spherical Bessel functions and spherical harmonics. It is a two - 

dimensional joint representation of the angular information ( , )kj ji k j i x x x  and the inter - atomic 

distance ijd , as shown in Formula (5): 
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Among them, RBF[1, , ]l N   represents the range of angular quantum numbers for the lj  type of Bessel 

function and the 0
lY  spherical harmonic function. 1( )l lnj z  is the value of the 1l   order Bessel function 

at lnz . lnz  is the n  root of the l-th order Bessel function. For ( )ji
RBFe  and ( , )kj ji

SBFa , since the step function is not 

twice continuously differentiable at the cutoff radius cr , a polynomial envelope function envf  is used as 

shown in Formula (6). It has a multiple root of 3 at d = cr , so that the first - order and second - order 

derivatives of ( )ji
RBFe  and ( , )kj ji

SBFa  tend to 0 at the cutoff point. 
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Figure 1 shows the architecture of the DimezblNet model, which includes one RBF layer, one SBF layer, 

one Embedding layer, six Interaction layers, one ZBL-Calculator layer, and one Output layer. 

Figure 1: Architecture of the DimezblNet model 
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There shows the architecture of the DimezblNet model, which includes one RBF layer, one SBF layer, 

one Embedding layer, six Interaction layers, one ZBL-Calculator layer, and one Output layer. 
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3.1 Embedding Layer 

The atomic number is represented by learnable, randomly initialized atomic type embeddings (0) F
iZ  ¡ , 

and these embedded atomic sequences are shared across molecules. The message input generated by the 

atomic number and the inter - atomic distance is shown in Formula (7): 

 (1) (0) (0) ( )
RBF([ ] )ji

ji j ih Z e W b‖Z  (7) 

Where the weight matrix W and bias b are learnable. 

3.2 Interaction Layer 

The interaction layer here is the implementation of the aggregation function and update function in 

Formula 3. Among them, the two - dimensional representation ( , )kj ji
SBFa  is transformed into an linearN  - 

dimensional representation through a linear layer. The purpose of this processing is to make the dimension 

of ( , )kj ji
SBFa  independent of the subsequent bilinear layer. The subsequent bilinear layer uses a 

larger linearN F F   - dimensional weight representation. For the representation of the radial basis, the way 

of using element - wise multiplication ( )
RBF

ji
kje W he  is superior to the bilinear layer. 

3.3 ZBL-Calculator Layer 

This layer implements the calculation of ZBL potential, with the formula shown in Formula (8): 
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Among them, 
04

i je e


 is a physical scale factor in the ZBL potential energy calculation formula that can 

reflect the strength of the charge interaction. ( )x  is a screening function, and its purpose is to simulate the 

weakening effect caused by the overlap of electron clouds at short distances for the Coulomb repulsion 

between two atomic nuclei, as shown in Formulas (9) and (10). 
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Where nc , nd , 0a  are parameters fitted through experiments and first-principles calculations. 

3.4 Output Layer 

The message embeddings of each layer are passed to the output layer. The output layer uses the radial 

basis function ( )
RBF

jie  to transform each message embedding jih , which ensures continuous differentiability. 

The incoming messages of each atom  i are accumulated to obtain i ji

j

H h , and then multiple dense 

layers are used for transformation to generate the atomic - level output ( )l
i zblv v . Subsequently, they are 

accumulated again to obtain the final result ( )l
i

i l

V v . The force is obtained from the negative gradient 

of the total energy relative to the atomic positions, as shown in Formula (11): 

 poti iVF  
r

 (11) 



zeuspress.org ; Computers and Artificial Intelligence; Vol.2, No.2 2025 

49 

 

4. Experimental Analysis 

4.1 Evaluation Metrics 

To evaluate the model's performance, this paper uses the mean absolute error (MAE) for each metric. 

4.2 QM9 

The QM9 (Ramakrishnan et al., 2014; Ruddigkeit et al., 2012) dataset was used to benchmark the 

performance of DimezblNet in predicting molecular properties. QM9 consists of approximately 130,000 

molecules in equilibrium. In model training, 11,000 training samples, 10,000 validation samples, and 10,831 

test samples were used. The results were compared with the reported results of PPGN (Maron et al., 2019), 

SchNet, PhysNet (Unke & Meuwly, 2019), Cormorant (Anderson et al., 2019), and DimeNet, as shown in 

Table 1. 

Table 1: Mean Absolute Errors (MAE) and Units of Prediction Targets in QM9 

Target Unit PPGN SchNet PhysNet Cormorant DimeNet DimezblNet 

  D 0.017 0.033 0.0529 0.13 0.0286 0.0273 

  a₀³ 0.131 0.235 0.0615 0.092 0.0469 0.0452 

HOMO  meV 40.3 41 32.9 36 27.8 26.7 

LUMO  meV 32.7 34 24.7 36 19.7 18.9 

  meV 60 63 42.5 60 34.8 33.1 

2R  a₀² 0.592 0.703 0.75 0.673 0.231 0.217 

ZPVE  meV 3.12 1.7 1.395 1.98 1.29 1.23 

0U  meV 36.8 18 14 13 8.29 8.07 

U  meV 36.8 19 14 – 7.89 7.63 

H  meV 36.3 14 14 – 8.11 7.92 

G  meV 36.4 14 14 – 8.98 8.71 

vc  (K*cal)/mol 0.055 0.033 0.028 0.031 0.0249 0.0237 

4.3 MD17 

The MD17 (Chmiela et al., 2017) dataset was used to test the performance of DimezblNet in molecular 

dynamics simulation. This benchmark aims to predict the energy and atomic forces of eight small organic 

molecules, with given atomic coordinates of thermalized (i.e., non-equilibrium, slightly perturbed) systems. 

The ground-truth data were calculated through molecular dynamics simulations using density functional 

theory (DFT). In model training, 1,000 training samples and 10,000 validation/test samples were used. The 

results were compared with the reported results of sGDML (Chmiela et al., 2019), SchNet, and DimeNet, as 

shown in Table 2. 

Table 2: Mean Absolute Errors (MAE) of Energies ( 1kcal mol ) and Forces ( 1 -1kcal mol Å ) for 8 Small Organic 

Molecules in MD17 

Molecule  SGDML SchNet DimeNet DimezblNet 

Aspirin 
Energy 0.19 0.37 0.204 0.194 

Forces 0.68 1.35 0.499 0.473 

Benzene 
Energy 0.1 0.08 0.078 0.075 

Forces 0.06 0.31 0.187 0.181 

Ethanol 
Energy 0.07 0.08 0.064 0.062 

Forces 0.33 0.39 0.23 0.217 

Malonaldehyde 
Energy 0.10 0.13 0.104 0.098 

Forces 0.41 0.66 0.383 0.367 

Naphthalene 
Energy 0.12 0.16 0.122 0.117 

Forces 0.11 0.58 0.215 0.208 

Salicylic acid 
Energy 0.12 0.2 0.134 0.127 

Forces 0.28 0.85 0.374 0.361 
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Toluene 
Energy 0.1 0.12 0.102 0.097 

Forces 0.14 0.57 0.216 0.207 

Uracil Energy 0.11 0.14 0.115 0.107 

5. Conclusion 

This study constructs the DimezblNet model with enhanced physical constraints by integrating the ZBL 

empirical potential and graph neural networks, effectively addressing the modeling bias of short-range 

atomic interactions. On the MD17 dataset, the model's prediction accuracy for energy and atomic forces 

comprehensively surpasses models like SchNet and DimeNet. In QM9 molecular property prediction, the 

errors of polarizability (α) and dipole moment (μ) are reduced to 0.0452 Å³ and 0.0273 D, respectively, 

verifying the advantages of DimezblNet in electron structure-sensitive properties. This method not only 

improves prediction accuracy but also enhances model interpretability through explicit physical potential 

constraints, providing an efficient tool for multi-scale modeling in material design and biomolecular 

simulation.  
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