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Abstract 

With the growing complexity of computer vision tasks and the explosive expansion of data scales, the 
optimization of neural network hyperparameters has become increasingly critical to model performance. 
Efficient hyperparameter optimization enables breakthroughs in tackling complex tasks and adapting to 
intricate scenarios. Traditional optimization methods rely heavily on manual experience and suffer from low 
efficiency. In contrast, meta-learning empowers hyperparameter optimization through its core logic of 
“learning to learn”: it extracts generalizable experience to build meta-cognition, thereby enhancing 
computational efficiency while achieving strong generalization capabilities. This paper first systematically 
introduces basic concepts such as neural networks, then elaborates on classic traditional optimization methods 
and meta-learning-based approaches, and then presents the experimental results of selected algorithms. Finally, 
it identifies unresolved issues and provides an outlook on future development trends. 
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1. Introduction 
As artificial intelligence (AI) technology penetrates deeply into fields such as computer vision, natural 

language processing, autonomous driving, and medical imaging, deep learning—driven by the rapid 
advancement of computing power and the era of big data—has achieved revolutionary breakthroughs, 
transitioning from laboratory research to large-scale industrial applications. In recent years, model structures 
have become increasingly complex, and the scale of hyperparameters has expanded dramatically. The 
performance of these models depends not only on innovations in algorithm structures but also on key 
adjustment processes. Among these processes, the optimization of neural network hyperparameters directly 
affects the model’s generalization ability and training efficiency. 

Tasks in the computer vision (CV) field require the extraction of hierarchical features from pixel data. 
These tasks share high commonality and transferability, while training on datasets incurs extremely high 
costs—and model performance is highly sensitive to hyperparameters. However, traditional manual 
hyperparameter tuning relies heavily on expert experience and lacks adaptability. To address this challenge, 
automated machine learning (AutoML) and hyperparameter optimization, which are based on meta-learning 
principles, have emerged. Snoek et al. (2012) successfully applied Gaussian processes to hyperparameter 
optimization, significantly reducing the number of training epochs, although the dimensionality of the 
hyperparameters remained high. On January 28, 2016, the British journal Nature reported that AlphaGo (Silver 
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et al., 2016)—developed by DeepMind, a subsidiary of Google—defeated the European Go champion with a 
score of 5--0. AlphaGo adopted a deep neural network model, marking a major breakthrough in AI and 
verifying the great potential of deep learning. In 2017, Bello et al. (2017) demonstrated the feasibility of using 
neural networks to replace traditional optimization algorithms, providing an important source of inspiration. 
In the same year, Chen et al. (2017) reported that a recurrent network controller could be trained via 
reinforcement learning to learn automatic update rules, which offered significant insights for hyperparameter 
optimization. In industrial scenarios, computer vision applications have strict requirements for model 
performance; meta-learning-based optimization not only ensures model accuracy but also lowers technical 
barriers. Given this context, this paper briefly summarizes traditional hyperparameter optimization methods 
(including Bayesian optimization) and meta-optimization methods (including MAML), along with their 
experimental results. 

2. Fundamental Concepts 

2.1 Computer Vision 
Computer vision (CV) uses computer systems to simulate and achieve human visual functions, thereby 

enabling analysis and decision-making for images and videos (Hu & Wang, 2025). It is an interdisciplinary 
field involving AI, signal processing, statistics, information theory, and computational mathematics. The 
human visual process can be simplified into three steps: the eyes form an image on the retina, the brain 
interprets the image, and a response is generated. Computers simulate these steps through three corresponding 
processes: imaging by imaging devices, data processing via computer systems, and the output of results (Pan 
& Zhang, 2005). In the early stages, owing to the limited data volume and computing power, CV relied on 
manual feature classification to recognize characters and images. With the development of image processing 
technology, methods such as support vector machines (SVMs) for feature extraction, machine learning models, 
and deep learning (e.g., convolutional neural networks (CNNs)) have emerged. These methods enable better 
implementation of daily applications, including image classification, object detection, image semantic 
segmentation, image caption generation, pedestrian separation, facial recognition, motion estimation, and 
image inpainting (Liu, 2019). Recent studies indicate that more than 80% of the more than 250 PBs of data 
generated globally every day consists of images and videos (Liu, 2025). Faced with the task of processing such 
massive data, there is an urgent need to automate information extraction. 

2.2 Neural Networks 

2.2.1 Overview of Neural Networks 
A neural network is a computational model that simulates the connection structure, information 

transmission, and processing patterns of neurons in the human brain. Its primary goal is to analyze data and 
make predictions. Like the human brain, a neural network contains many “neurons” (basic computing units), 
which are connected through an input layer, hidden layers, and an output layer to form a multilayer network 
architecture. Information is transmitted between neurons by simulating the “synaptic strength” of biological 
neurons through weights. Since the advent of neural networks in the 1940s, hundreds of variants have been 
developed. In computer vision tasks, the core objective of neural networks is to extract features from image 
and video data. The following sections focus on two typical network paradigms that support this objective: the 
convolutional paradigm represented by the CNN and the attention paradigm represented by the transformer. 

2.2.2 Convolutional Neural Networks (CNNs) 
Traditional methods for processing image data attempt to capture global information, which leads to 

redundant data and heavy computational burdens. The introduction of “convolution” shifted the approach to 
extracting local image features. Convolution uses a “convolution kernel” (a fixed-size matrix) that slides over 
the input image with a specific stride. At each sliding position, a convolution operation is performed: the 
convolution kernel and the corresponding pixels of the image are multiplied point-by-point and summed. This 
process preserves local features and generates a feature map. 

Convolutional neural networks (CNNs) were among the earliest deep neural networks to be successfully 
trained and widely applied. In a typical CNN architecture, convolutional layers and sampling layers (pooling 

https://www.zeuspress.org/


zeuspress.org ; Computers and Artificial Intelligence; Vol.2, No.3 2025 

 12 

layers) alternate. Within a convolutional layer, the same convolution kernel is shared across the same feature 
map. After multiple rounds of “convolution” and “sampling”, the fully connected layer finally connects to the 
output target. During pooling layer sampling, max pooling is commonly used: it outputs the maximum pixel 
value of a region to enhance local features and focus on prominent textures. Alternatively, average pooling can 
be applied: it outputs the arithmetic mean of a region to retain more background information and achieve a 
more holistic, global perspective (Zhang et al., 2019). CNNs significantly reduce the number of connections 
between neurons, lowering computational costs while effectively preventing overfitting (Ji et al., 2022). 
Currently, many optimized variants have been developed on the basis of CNNs. For example, ResNet (residual 
network), proposed innovatively by Huang et al. (2004), introduced residual connections into deep 
convolutional neural networks, alleviating the vanishing gradient problem caused by excessively deep CNN 
models (Eliasmith & Anderson, 2003). The YOLO (you only look once) neural network model (Yi, 2021) 
adopts an end-to-end approach: it scans an image once to complete both the localization and classification 
tasks, significantly improving the detection speed (up to 45 FPS). 

Studies have applied CNNs to classify 4 common fungal infectious skin diseases, achieving an accuracy 
rate of up to 93.3% (Nigat et al., 2023). Lee et al. (2023) used a CNN model and nearly 600 periapical X-rays 
of single premolars to predict endodontic treatment outcomes, making endodontic treatment decisions more 
scientific. These cases all demonstrate the practicality of CNNs in medical image analysis. 

2.2.3 Transformer Neural Networks 
The attention mechanism is inspired by human visual and cognitive processes—humans tend to focus on 

the most critical parts when making decisions (Ren & Wang, 2021). A CNN processes data via fixed weights 
and cannot flexibly adapt to task requirements. In contrast, the transformer—proposed by Vaswani et al.—
uses an attention mechanism to dynamically adjust the degree of focus on different parts: it calculates the 
importance of each part to adjust the focus, assigning higher weights to key information. In essence, this is a 
form of dynamic weighting. Each layer of the transformer’s encoder and decoder includes multihead self-
attention (MHSA) (Miao, 2025). Through multiple parallel attention heads, information is captured from 
different perspectives, avoiding one-sidedness in information acquisition. 

In recent years, the fusion of CNNs and transformers has become the mainstream framework for medical 
image segmentation. The CNN compensates for the transformer’s high computational cost, whereas the 
transformer addresses the CNN’s low flexibility. One study proposed a transformer-based cardiac MR image 
segmentation method with multiscale convolutional attention (TMCANet) (Li, 2025). Compared with existing 
network models in terms of Dice scores on the ACDC dataset, the TMCANet model achieved an accuracy of 
over 90% in left ventricle (LV) and right ventricle (RV) segmentation, indicating significantly improved 
segmentation performance. This finding verifies the value of their complementarity in complex medical image 
analysis. 

2.3 Hyperparameters 
Hyperparameters are configuration variables of a model or algorithm. They are set manually rather than 

learned during training and define the properties of the model (Li et al., 2022). Hyperparameters typically need 
to be determined in advance on the basis of the problem scenario, data characteristics, and other factors. 

The learning rate is a key general hyperparameter that determines the step size of parameter updates during 
model training. 

The hyperparameters of convolutional neural networks include the convolution kernel size, number of 
convolution kernels, convolution stride (Tong et al., 2018), number of network layers, and number of neurons 
per layer. The hyperparameters of transformer neural networks include the number of attention heads and the 
number of encoder layers. 

2.4 Meta-Learning 
The core of meta-learning is “learning to learn”, first proposed by Maud. Metearning imitates humans’ 

ability to learn quickly by referencing historical experience, enabling machines to make independent decisions. 
It is a set of algorithm frameworks (Y. Liu, 2022). A dataset consists of a training set and a test set. Meta-
learning trains a model via the training set, evaluates the model via the test set, adjusts the model on the basis 
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of the test results, and repeats the training and testing process. Finally, the model with the best performance on 
the test set is selected. Vilalta et al. proposed that meta-learning is an algorithm that dynamically improves 
bias through the accumulation of meta-knowledge, proving that the essence of meta-learning is to enable 
machines to learn to adjust parameters independently by existing experience (Vilalta & Drissi, 2002). 

In recent years, emerging humanoid robots have faced complex and unpredictable situations in real life. 
Traditional machine learning methods require enormous computational costs to fully simulate all the scenarios. 
The emergence of meta-learning has endowed AI with self-learning and strong generalization capabilities (Li 
et al., 2021); for example, few-shot learning enables rapid adaptation to new tasks on the basis of limited 
experience. In the field of computer vision, meta-learning-based hyperparameter optimization methods have 
significant advantages in terms of autonomy over traditional methods. 

3. Traditional Hyperparameter Optimization (HPO) Methods 

3.1 Manual Tuning 
Traditional manual hyperparameter tuning relies on the developer’s experience, knowledge, and task 

requirements to manually adjust the hyperparameters of a neural network for improved model performance. 
For example, in a CNN-based cat-and-dog image classification task, developers might manually set the first 
convolutional layer to 32 3×3 convolution kernels before training. If the model is underfit after training, the 
number of convolution kernels can be manually increased to 64 to enhance feature extraction capabilities. If 
cats or dogs in the images are large scale, they can manually adjust the convolution kernel size to 5×5 to expand 
the receptive field and extract information more efficiently. However, when the number of hyperparameters is 
large and they are interrelated (in complex scenarios), it is difficult to find the globally optimal parameter 
combination. The following sections introduce several algorithms that are more suitable for hyperparameter 
optimization: brute-force algorithms (grid search, random search) and Bayesian optimization algorithms. 

3.2 Grid Search 
Grid search finds the optimal hyperparameter combination by iterating through all predefined 

hyperparameter combinations and aligning them with the task objectives (Li et al., 2024). However, grid search 
has several drawbacks: as the number of hyperparameters increases, the number of hyperparameter 
combinations grows exponentially, leading to high computational costs from iteration; for continuous 
hyperparameters, predefinition fails to cover the entire search space, resulting in inaccurate results; and it 
cannot support parallel computing, increasing time costs. 

3.3 Random Search 
Randomly sample hyperparameter combinations from the hyperparameter search space and perform 

multiple searches to obtain combinations with good performance (Chen et al., 2020). Random search is very 
simple to implement and has low computational costs. However, this method has poor stability, lacks 
directionality, and may miss the globally optimal solution. 

3.4 Bayesian Optimization 
The hyperparameter optimization process can be regarded as a black-box optimization problem for 

generalization performance (Deng, 2019). Bayesian optimization builds a probabilistic model for the loss 
function. The Gaussian process (GP) serves as the basis of the classic probabilistic model for Bayesian 
optimization. Its essence is to learn information from loss function evaluations to predict the shape of the 
objective function, reduce the number of invalid attempts and samples, and ultimately find the minimum value 
of the loss function. 

Recent studies have shown that the acquisition function (i.e., expected improvement) can control new 
possibilities on the basis of the potential improvement of parameter points to find the optimal result; to 
accelerate the startup speed of the Bayesian optimization algorithm, prior knowledge learned through meta-
learning can be used to initialize Bayesian optimization (Peng, 2025). The following sections focus on methods 
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that use meta-learning to empower hyperparameter optimization and improve the autonomy of machine 
learning. 

4. Meta-Learning-Enabled Hyperparameter Optimization Methods 

4.1 Gradient-based Meta-Learning Methods 
4.1.1 MAML 

Model-agnostic meta-learning (MAML) is a classic gradient descent-based meta-learning framework 
proposed by Finn et al. (2017). Its core goal is to use gradient information from meta-training tasks to aggregate 
gradient updates and initialize model parameters, enabling the model to adapt quickly to new tasks. 

The core parameter optimized by the MAML framework is the initial parameter θ of the model. In the 
MAML framework, the dataset is divided into a meta-training set and a meta-test set. Small samples are 
selected from the meta-training set as tasks, and all tasks share the parameter θ—these tasks are used for 
pretraining sampling in MAML. The samples in one task are further divided into a support set and a query set 
(Deng & Zhang, 2024). The training process of MAML includes inner-loop optimization and outer-loop 
optimization. 

In inner-loop optimization, a randomly initialized parameter θ is first used. A batch of tasks is sampled 
from the support set to train θ, and gradient descent is applied to minimize the loss function (Pang, 2023), 
resulting in the optimal parameter θ' for each task. This process can be expressed as Equation (1): 

  𝜃′ = 𝜃 − 𝛼𝛻!𝐿"(𝑓!)  (1) 

where α represents the inner-loop optimization learning rate and where 𝐿" represents the loss of the support 
set data. 

In outer-loop optimization, historical tasks and their optimized parameters θ' are sampled. The loss is 
calculated on the basis of the query set, gradient information is aggregated, and the parameter θ is updated. 
This process can be expressed as Equation (2): 

 𝜃 = 𝜃 − 𝛽𝛻! ∑ 𝐿"!"!∼" (𝑓!$!) (2) 

where β represents the outer-loop optimization learning rate; the summation part represents the total loss 
of the historical tasks on the query set after obtaining θ'; and 𝛻! 	represents the gradient operator of the 
parameter θ. 

Through the alternation of inner-loop and outer-loop optimization, a meta-parameter θ with good 
performance is obtained—i.e., an initial parameter that is as adaptable as possible to all tasks. When new tasks 
are solved, it is easier to fine-tune the parameters (Pang et al., 2023), improving the ability to quickly learn 
new tasks, reducing the number of update iterations, and greatly enhancing the optimization efficiency of new 
tasks. 

The MAML algorithm obtains highly generalizable initial parameters through few-shot training, enabling 
rapid adaptation to new scenarios. In the field of computer vision, few-shot problems and the need to 
distinguish complex visual scenarios (e.g., object recognition under different lighting, angle, and environment 
conditions) are common challenges. Thus, the characteristics of MAML make it well suited for computer 
vision applications. Gao (2023) slightly improved MAML to classify skin lesions via the ISIC2019 skin lesion 
dataset, which contains 25,332 unique benign and malignant skin lesion images from over 2,000 patients, 
covering 8 different types of skin diseases (including melanoma and melanocytic nevi). The experimental 
results show that the improved MAML achieves an accuracy of 84.9%, a precision of 83.65%, and a recall of 
84.1%, which far exceeds those of other meta-learning models. Dou (2022) addressed the few-shot dataset of 
ransomware by converting byte streams into grayscale images using their static features, extracting features 
with a convolutional neural network, and building an MAML model for virus classification. Under the 5-way, 
5-shot task setting, both the test accuracy and severe accuracy reached over 90%. 
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4.1.2 FOMAML 
To address the low computational efficiency of direct differentiation (second-order differentiation) of the 

meta-parameter θ in the outer-loop optimization of the MAML algorithm, the FOMAML (first-order MAML) 
algorithm was proposed (X. Liu, 2022). In outer-loop optimization, FOMAML differentiates the optimized 
parameter θ' of each historical task (first-order differentiation), thereby improving the computational speed. 

4.1.3 Meta-SGD 
Meta-SGD (meta-stochastic gradient descent), proposed by Li et al. (2017) from Huawei Noah’s Ark Lab, 

is a meta-learning algorithm. Its core idea is to design hyperparameters such as the learning rate as learnable 
meta-parameters. The update method of meta-SGD is shown in Equation (3): 

 𝜃%′ = 𝜃 − 𝛼 ⊙ 𝛻!𝐿&"!
#$(𝜃)  (3) 

where (Xie, 2024): ⊙ represents elementwise multiplication, indicating that the learning rate α is a vector—
each parameter is multiplied by a separate learning rate, meaning that the learning rate for each parameter is 
learned. Obviously, Meta-SGD is more expressive than MAML is. 

4.2 Reptile 
Reptile is a lightweight and efficient meta-learning method. It addresses MAML’s reliance on second-order 

derivatives by requiring only first-order gradient information (Xia & Cui, 2022). Like MAML, Reptile also 
uses a meta-training set and a meta-test set. It first initializes the parameter φ, selects tasks from the meta-
training set, performs K-step gradient descent on each task to fine-tune the parameter, and obtains a temporary 
parameter φ'. To enhance the generalization of the parameter across all tasks, the difference between φ' and 
φ is calculated, the average of all differences is computed, and the global meta-parameter φ is updated via 
this average difference. 

Deng (2023) proposed a meta-learning-based open-world knowledge graph completion model via the 
reptile algorithm. Experiments were conducted on the open-world knowledge graph completion problem with 
K=4. The CNN was set to 3 layers, with a convolution kernel size of 3, 100 convolution kernels, and a pooling 
stride of 2. The experimental data revealed that the model achieved significant performance in terms of the 
MRR metric: it outperformed TCVAE by 20.9% on the WDtext dataset and by 10.9% on the DBPtext dataset. 

4.3 Multitask Learning (MTL) 
When the target task is influenced by numerous factors, multitask learning (MTL) (Zhang & Yang, 2022) 

shares features across related tasks, uses loss functions of multiple tasks to train multiple visual tasks 
simultaneously, and explores higher-level information between tasks (Shang et al., 2019). This enables the 
network model to more accurately capture the essence of the original task. There are two common MTL 
methods: hard parameter sharing and soft parameter sharing. In the hard parameter sharing mechanism, 
multiple tasks share the initial backbone network (e.g., CNN convolutional layers, transformer encoders) 
through hidden layers, and only the output layers are designed with separate parameters—this reduces the risk 
of overfitting (Long & Wang, 2015). In soft parameter sharing, an independent model is designed for each 
task, and constraints and corrections are applied to the parameters of different models (Fan, 2021). 

In the field of computer vision, Playout et al. (2019) proposed integrating a detection task based on MTL 
to assist in the segmentation of retinal lesions. Ren and Lee (2018) used MTL to learn task-agnostic computer 
vision representations: a multitask learning framework based on AlexNet was trained to learn representations 
that capture high-level visual features by first training on three tasks (surface normal detection, depth 
estimation, and instance contour detection) and then transferring the learned representations to the VOC2007 
and VOC2012 datasets for classification and detection tasks. Ye (2022) developed an improved MTL-based 
model that effectively combines the feature selection function of the SE module, achieving clearer contour 
segmentation results and estimation outcomes. 
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5. Conclusion and Outlook 

5.1 Conclusion 
In summary, this paper summarizes neural network-based hyperparameter optimization methods. First, it 

provides the relevant background of hyperparameter optimization and the meta-learning field. Second, it 
introduces concepts such as computer vision, neural networks, hyperparameters, and meta-learning. Third, 
traditional hyperparameter optimization methods are presented, and their advantages and disadvantages are 
summarized. Fourth, it elaborates on meta-learning-based hyperparameter optimization methods, including 
MAML and its variants, Reptile, and MTL, and provides experimental data to prove that meta-learning 
empowers a significant improvement in hyperparameter optimization performance, which is highly important 
for task processing. 

5.2 Outlook 
Although meta-learning-based automatic hyperparameter optimization methods have achieved remarkable 

progress, there are still issues to be optimized. For example, MAML suffers from unstable training—gradients 
are prone to explosion or vanishing after passing through multiple convolutional layers, the effect of batch 
normalization needs improvement, and the learning rate setting is rigid. MTL, on the other hand, is complex 
to implement: it requires simultaneous use of data from multiple tasks, and different loss functions need to be 
designed for different tasks to update gradients, resulting in low efficiency. Moreover, task transfer capability 
is limited, and exploring visual information to establish connections between tasks deserves further research. 

Overall, despite the many unresolved issues, meta-learning-based hyperparameter optimization has 
remained a research hotspot for a long time. New methods and technologies will enable it to be more widely 
applied to object detection and recognition in complex scenarios (e.g., pedestrian detection) and real-time tasks 
requiring a balance between computing power and energy efficiency (e.g., autonomous driving, real-time video 
analysis). 
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