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Abstract 

Accurate prediction of drug–target interactions (DTIs) is a fundamental task in AI-driven drug discovery and 
repositioning. While traditional experimental methods are reliable, they are often time-consuming and 
expensive, limiting their scalability. Recent computational approaches have shown promise but still face 
challenges in extracting informative representations and modeling cross-modal interactions between drugs and 
proteins. In this work, we propose CoA-DTI, a novel deep learning framework that integrates Graph 
Convolutional Networks (GCNs), Convolutional Neural Networks (CNNs), and a Co-Attention mechanism 
for DTI prediction. Drug molecules are encoded as molecular graphs and processed through multi-layer GCNs 
to capture topological and atom-level features. Protein sequences are encoded via CNNs to learn local 
biochemical patterns. A co-attention module is then employed to model bidirectional interactions between the 
drug and protein representations, enabling fine-grained and context-aware feature fusion. Extensive 
experiments on the benchmark Davis dataset show that CoA-DTI achieves superior performance over 
competitive baselines in terms of accuracy and robustness. Ablation studies further validate the effectiveness 
of each module. This work demonstrates the potential of integrating graph-based learning and cross-modal 
attention in bioinformatics applications, offering a generalizable and interpretable approach for interaction 
prediction. 
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1. Introduction 
Drug–target interaction prediction is a fundamental problem in drug discovery and drug repurposing. 

Accurately identifying potential binding relationships between drug compounds and target proteins can 
significantly reduce development costs and time, while improving the success rate of novel therapeutics. 
Traditional experimental approaches, such as high-throughput screening (HTS), although reliable, are often 
time-consuming, expensive, and limited in scalability (Lamb et al., 2006; MacArron et al., 2011). 
Consequently, computational DTI prediction has emerged as a promising alternative, aiming to efficiently and 
accurately identify candidate drug–target pairs through algorithmic modeling (Yamanishi et al., 2008). 

With the rapid advancement of artificial intelligence, DTI prediction methods have evolved substantially. 
Early studies primarily relied on handcrafted features, such as molecular fingerprints and sequence similarity, 
in combination with classical machine learning models—e.g., support vector machines, logistic regression, 
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and random forests (Breiman, 2001; Cortes & Vapnik, 1995; Fan et al., 2008). However, these approaches 
were limited in their ability to capture complex structural and functional patterns (Chen et al., 2012). More 
recently, graph neural networks have been widely adopted to model the topological structure of drug molecules 
represented as graphs, enabling effective extraction of structural features (Gilmer et al., 2017). In parallel, deep 
learning models such as convolutional neural networks have shown strong performance in learning protein 
sequence representations by capturing local motifs and functional domains (Li et al., 2024). Despite these 
improvements, most existing methods still struggle to effectively integrate and model interactions across 
heterogeneous modalities. 

One of the key challenges in DTI prediction lies in fully leveraging the complementary information between 
drug structures and protein sequences and modeling their intricate cross-modal interactions. Conventional 
fusion strategies, such as simple concatenation or weighted averaging, often overlook the dynamic 
dependencies between modalities and fail to capture the underlying interaction mechanisms. The recent 
development of attention mechanisms offers a new paradigm for multimodal learning, particularly co-attention 
mechanisms, which jointly model inter-modal dependencies and facilitate precise alignment and interaction 
modeling between features from different sources (Lu et al., 2016). 

In this work, we propose CoAG-DTI, a novel DTI prediction model that integrates GCNs with a co-
attention-based fusion mechanism. Specifically, drug molecules are encoded through a multi-layer GCN to 
extract structural representations, while protein sequences are processed by a CNN to learn biologically 
meaningful sequence patterns. A co-attention module is then introduced to capture fine-grained, bidirectional 
interactions between drug and protein embeddings, enabling deep cross-modal feature fusion and enhancing 
predictive performance. We conduct extensive experiments on the standard Davis dataset, demonstrating that 
CoAG-DTI outperforms existing state-of-the-art methods in both accuracy and generalization. Ablation studies 
further confirm the effectiveness of the co-attention mechanism and the proposed fusion strategy. 

The main contributions of this work are summarized as follows:We design a dual-modality feature 
extraction architecture that combines GNNs and CNNs to effectively encode structural and sequential features 
of drugs and proteins, respectively. We introduce a co-attention mechanism to enhance cross-modal interaction 
modeling and improve feature fusion quality. We perform comprehensive evaluation and ablation analysis on 
a public benchmark dataset, verifying the effectiveness and superiority of our model architecture. 

2. Methods 

2.1 Model Overview 
To effectively model the complex interactions between drug molecules and target proteins, we propose a 

deep learning framework named CoAG-DTI, which integrates graph neural networks with a co-attention 
mechanism, as illustrated in Figure 1. The overall architecture consists of three core modules: 

First, the drug feature encoder transforms each SMILES string into a molecular graph. A multi-layer graph 
convolutional network is then applied to extract both topological and atom-level features, capturing local and 
global structural information of the molecule. 

Second, the protein feature encoder processes the primary amino acid sequence of the target protein using 
a multi-layer convolutional neural network, which learns local sequence patterns and structural motifs to 
produce biologically meaningful representations. 

On top of these modality-specific encoders, we incorporate a co-attention mechanism that establishes a 
bidirectional attention mapping between the drug and protein representation spaces. This design enables the 
model to identify potential regions of interaction and facilitates deep cross-modal feature fusion. 

Finally, the fused representation is fed into a fully connected layer to predict the probability of interaction 
between the drug and the target protein. This architecture maintains strong expressive capacity while enhancing 
the model’s ability to capture fine-grained, functionally relevant interactions, ultimately improving the 
accuracy and interpretability of DTI prediction. 

Figure 1: Overall architecture of the CoAG-DTI model 
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2.2 Drug Feature Encoder 
In the CoAG-DTI model, drug molecules are first represented using the SMILES notation. Each SMILES 

string is parsed into a molecular graph G = (V, E), where V denotes the set of atoms and E represents the 
chemical bonds between them. Each atom v ∈ V is associated with a 75-dimensional initial feature vector x!, 
encoding atom-level descriptors such as element type, degree, formal charge, and aromaticity. 

To unify the representation dimension, a linear transformation is applied to project the input features into a 
shared embedding space: 

𝐡"
($) = 𝐖$ ⋅ 𝐱" 

The transformed node embeddings are then passed through a stack of three GCN layers to extract local and 
global structural information. The propagation rule for the l-th GCN layer is defined as: 

𝐇(&'() = 𝜎2𝐷4)(/+𝐴6𝐷4)(/+𝐇(&)𝐖(&)7 

where A4 = A + I is the adjacency matrix with self-loops added, D4 is the corresponding degree matrix, H(,) 
is the node embedding matrix at layer l, W(,) is the learnable weight matrix, and σ(⋅) is a nonlinear activation 
function such as ReLU. 

After the final GCN layer, the output node features are reshaped into a three-dimensional tensor of shape 
[B, N, d], where B is the batch size, N is the maximum number of atoms per molecule, and d is the hidden 
dimension of the last GCN layer. This final representation, denoted as H-, serves as the drug feature embedding 
and is used in the co-attention module for cross-modal interaction with protein features. 

2.3 Protein Feature Encoder 
To effectively capture biologically meaningful information from protein primary sequences, CoAG-DTI 

adopts a hybrid encoding strategy that combines CNN with Self-Attention .  

Given a protein sequence S = {s(, s+, … , s.}, where each residue s/ ∈ 𝒜 and 𝒜 is the amino acid alphabet, 
we first embed each residue into a continuous vector space using an embedding layer, resulting in an input 
tensor of shape ℝ.×-!, where d1 is the embedding dimension. 

The embedded sequence is then passed through a series of three 1D convolutional layers, each followed by 
batch normalization and ReLU activation. The l-th convolutional layer operates as follows: 

https://www.zeuspress.org/
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F(,) = ReLU PBN(,)2Conv1D(,)(F(,)())7U 

where F($) is the input embedding, and BN(,) denotes batch normalization. The three convolutional layers 
use kernel sizes of 3, 5, and 7 to capture local sequential patterns at multiple scales. 

After convolution, the resulting feature map is transposed into shape [L′, B, C], where B is the batch size 
and C is the channel dimension. This tensor is then processed by a multi-head self-attention mechanism to 
model long-range dependencies between residues. Given the query Q , key K , and value V  matrices, the 
attention output is computed as: 

Attention(𝑄, 𝐾, 𝑉) = softmaxa
𝑄𝐾2

b𝑑3
d𝑉 

Multi-head attention is applied in parallel across multiple subspaces, and the outputs are concatenated and 
projected to obtain the final attention-enhanced sequence representation. 

Finally, the output tensor is transposed and reshaped into shape [B, L′, d4], where d4 is the number of output 
channels. This representation H4 serves as the protein feature embedding, which is subsequently fed into the 
co-attention fusion module for interaction modeling with drug features. 

2.4 Co-Attention Fusion Module 
To model the fine-grained interactions between drugs and target proteins, we introduce a Co-Attention-

based feature fusion module. This module takes as input the encoded drug representation H- ∈ ℝ5×6×- and 
protein representation H4 ∈ ℝ5×.7×-", which are obtained from the previous graph-based and sequence-based 
encoders, respectively. For notational clarity and to align with standard attention formulations, we denote H- 
as V (value modality) and H4 as Q (query modality) in this section. 

We first map both representations into a shared latent space with dimensionality d_h using linear 
transformations: 

𝐕4 = 𝐖"𝐕,	 𝐐4 = 𝐖8𝐐 

where W! ∈ ℝ-×-# and W9 ∈ ℝ-"×-# are learnable projection matrices. 

Next, we apply bi-directional multi-head attention to capture cross-modal dependencies: 

𝐀: = MultiHeadAttn(𝐕4, 𝐐4, 𝐐4), 𝐀; = MultiHeadAttn(𝐐4, 𝐕4, 𝐕4) 

where MultiHeadAttn(Q, K, V)  is the standard scaled dot-product attention mechanism applied across 
multiple heads. 

To enhance feature stability and retain residual information, we apply dropout and layer normalization: 

𝐕<=>1- = LayerNorm(𝐕4 + Dropout(𝐀:)), 	 𝐐<=>1- = LayerNorm(𝐐4 + Dropout(𝐀;)) 

Then, the fused features are globally aggregated via mean pooling over the sequence length: 

𝐯?@@ = MeanPool(𝐕<=>1-), 	 𝐪?@@ = MeanPool(𝐐<=>1-) 

Finally, the aggregated drug–protein representation is formed by concatenating both vectors: 

𝐳 = [𝐯?@@‖𝐪?@@] 

where z ∈ ℝ+-# is the fused cross-modal feature vector used for downstream interaction prediction. 

https://www.zeuspress.org/
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3. Experimental Setup and Results 

3.1 Dataset 
We evaluate our model using the Davis dataset (Davis et al., 2011), which contains a total of 30,056 drug–

target interaction pairs, involving 68 drug compounds and 442 target proteins. Among all samples, 9,533 are 
labeled as positive interactions and 20,523 as negative. This dataset covers more than 80% of the human 
catalytic protein kinase family, making it highly representative and valuable for research related to kinase-
targeted drug development. 

3.2 Baseline Models 
We compare our method against a variety of baseline models, including both traditional machine learning 

and deep learning approaches. 

Traditional models: Random Forest (RF) (Breiman, 2001), Support Vector Machine (SVM) (Cortes & 
Vapnik, 1995), and Naive Bayes (NB) (Bhuvaneswari & Kalaiselvi, 2012). These methods have been widely 
applied to various prediction tasks and are commonly used as performance benchmarks in DTI prediction. 

Deep learning models: 

NRLMFβ (Ban et al., 2019): An enhanced version of NRLMF that introduces a Beta-distribution scoring 
scheme to better fit low-resource interaction pairs. 

HyperAttentionDTI (Zhao et al., 2022): Combines 1D convolutional layers with higher-order attention 
modules to capture spatial and channel-wise dependencies between drug and protein features. 

EmbedDTI (Jin et al., 2021): Integrates protein language model embeddings with graph attention networks 
to learn hierarchical molecular representations. 

GIFDTI (Zhao et al., 2023): Employs CNNFormer to extract both local and global sequence features and 
fuses them with global drug representations. 

TransformerCPI (Chen et al., 2020): Uses a sequence-based Transformer architecture with Word2Vec and 
GCN encoders for compound and protein representation. 

McANet (Bian et al., 2023): Proposes a shared-weight multi-head attention network optimized with 
PolyLoss to address data imbalance and overfitting. 

GraphormerDTI (Gao et al., 2024): Leverages a graph-structured Transformer to model molecular topology 
for improved interaction prediction. 

3.3 Evaluation Metrics 
To scientifically and comprehensively evaluate the overall performance of drug–target interaction 

prediction models, this study adopts five key evaluation metrics. Accuracy measures the proportion of correctly 
predicted samples out of the total samples, reflecting the model’s general correctness. Recall assesses the 
model’s ability to correctly identify true positive cases, indicating its sensitivity in recognizing actual 
interactions. The F1 score, calculated as the harmonic mean of precision and recall, provides a balanced 
assessment that is particularly useful when dealing with imbalanced datasets where positive and negative 
samples are unevenly distributed. The area under the receiver operating characteristic curve (AUROC) 
quantifies the model’s ability to distinguish between positive and negative samples across all classification 
thresholds by integrating the true positive rate against the false positive rate, with values closer to 1 indicating 
better discrimination. Additionally, the area under the precision-recall curve (AUPRC) emphasizes the quality 
of positive sample predictions by integrating precision and recall over varying thresholds, making it especially 
sensitive to datasets with class imbalance. Importantly, AUROC and AUPRC are threshold-independent 
metrics that comprehensively reflect the model’s robustness and stability across different decision boundaries, 
whereas accuracy, recall, and F1 score are threshold-dependent and directly demonstrate the model’s practical 
performance at specific classification thresholds. This multidimensional evaluation framework not only 
facilitates a fair and thorough comparison of different models’ strengths and weaknesses but also enables 
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deeper insights into their behavior in terms of sensitivity, specificity, and other critical characteristics relevant 
to drug–target interaction prediction tasks. 

3.4 Comparative Experiments 
Table 1: Results of the models on the Davis dataset and their comparison with the latest methods. The best results are 
highlighted in bold, while the second-best results are underlined. 

Model AUROC AUPRC Accuracy Recall F1 
RF 0.8964 0.8304 0.8448 0.6501 0.7201 
NB 0.7011 0.5843 0.6753 0.6170 0.5385 
SVM 0.8785 0.8016 0.8213 0.5970 0.6724 
NRLMFβ 0.9003 0.8274 0.8207 0.7022 0.7389 
HyperAttentionDTI 0.9139 0.8330 0.8636 0.7585 0.7596 
EmbedDTI 0.8359 0.6652 0.8591 0.7756 0.7721 
GIFDTI 0.9082 0.8211 0.8503 0.7522 0.7403 
TransformerCPI 0.8645 0.7470 0.8208 0.6272 0.6637 
McANet 0.9256 0.8511 0.8705 0.7667 0.7710 
GraphormerDTI 0.8866 0.8022 0.8640 0.8176 0.7984 
CoA-DTI 0.9321 0.8078 0.8913 0.8399 0.8560 

In the comparative experiments on the Davis dataset, the CoA-DTI model demonstrated significant 
advantages across multiple key evaluation metrics. Specifically, it achieved an AUROC of 0.9321, an accuracy 
of 0.8913, a recall of 0.8399, and an F1 score of 0.8560, outperforming eight mainstream methods including 
RF, NB, SVM, and HyperAttentionDTI. Notably, CoA-DTI obtained the best results in accuracy, recall, and 
F1 score.  

In summary, this experiment systematically validates the comprehensive performance superiority of the 
CoA-DTI model in the drug–target interaction prediction task. 

3.5 Ablation Experiments 
To thoroughly assess the contributions of key components within the CoA-DTI model to its overall 

predictive performance, we conducted ablation experiments by creating two distinct model variants. These 
variants isolate the effects of specific modules to better understand their individual impact. The results are 
summarized in Table 2. 

w/o GCN: In this variant, the drug encoder no longer utilizes the original three-layer graph convolutional 
network. Instead, it is replaced with a more generic graph neural network architecture. This modification tests 
the importance of the specific GCN design in capturing molecular graph features. 

w/o Co-A: This variant removes the co-attention mechanism from the model, thereby eliminating the cross-
modal interactions between drug and protein features. Instead, the drug and protein representations are simply 
concatenated before being fed into the prediction layer. This setup evaluates the effectiveness of the co-
attention module in enhancing feature fusion and interaction learning. 
Table 2: Ablation study results — performance comparison across different model variants. 

Model AUROC AUPRC Accuracy Recall 
CoA-DTI 0.9321 0.8078 0.8913 0.8399 
w/o GCN 0.9263 0.7786 0.7878 0.7804 
w/o Co-A 0.9162 0.7943 0.7662 0.7585 

The results of the ablation study clearly show that the CoA-DTI model achieves its best overall performance 
with the complete architecture, indicating that each designed module contributes positively to the task. When 
the GCN module in the drug encoder is removed and replaced with a generic GNN for drug representation, the 
model’s performance declines to varying degrees across all metrics, demonstrating that the multi-layer GCN 
more effectively captures molecular graph structural information and enhances drug representation capability. 
Furthermore, when the co-attention mechanism is removed and drug and protein features are simply 
concatenated for prediction, the model’s performance further deteriorates, especially in its ability to correctly 
identify positive samples. This indicates that the lack of effective cross-modal interaction weakens the model’s 
capacity to capture underlying interaction relationships. Overall, both the GCN module and the co-attention 
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mechanism play crucial roles in improving feature extraction and drug–target interaction modeling, 
constituting core components that enable CoA-DTI to achieve superior performance. 

4. Conclusion 
In this work, we propose a novel deep learning model for drug–target interaction prediction, named CoA-

DTI, which aims to enhance the fusion and interaction modeling of heterogeneous modality information. The 
model is built upon a graph attention-based drug encoder that effectively captures structural features of drug 
molecules through multi-layer graph convolution and self-attention mechanisms, while concurrently 
employing convolutional neural networks to extract local pattern information from protein sequences. To 
further strengthen cross-modal information exchange, a co-attention mechanism is introduced, enabling more 
interactive feature fusion between drugs and targets. 

Experimental results on the Davis dataset demonstrate that CoA-DTI significantly outperforms several 
state-of-the-art methods, including GraphDTA, MolTrans, and HyperAttentionDTI, across multiple evaluation 
metrics such as AUROC, AUPRC, Accuracy, Recall, and F1 score. Ablation studies further confirm the critical 
roles of both the GCN module and the co-attention mechanism in boosting model performance. 

In summary, CoA-DTI effectively models the complex nonlinear interactions between drugs and targets by 
deeply integrating graph neural networks with attention mechanisms, showing strong potential in DTI 
prediction tasks. Future work may explore incorporating protein structural information, knowledge graphs, or 
pretrained representations to further improve the model’s generalization ability and biological interpretability. 
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