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Abstract 

This paper aims to review the research progress in the optimization and quality control of additive 
manufacturing methods based on machine learning over the past three years. By systematically reviewing and 
analysing the relevant contributions, this paper discusses the application of machine learning in additive 
manufacturing, such as parameter optimization, material performance prediction, real-time process monitoring 
and data-driven quality evaluation. Machine learning technology significantly improves the stability and 
product quality of additive manufacturing, but it also faces challenges such as data standardization, multiscale 
modelling and interdisciplinary cooperation. Finally, this paper proposes the following: research directions 
and policy recommendations to promote the development of additive manufacturing technology. 
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1. Introduction 
In recent years, additive manufacturing (AM) technology has developed rapidly, has widely infiltrated key 

fields such as aerospace, medical, and automotive fields, and has become an important form of technical 
support for promoting high-end manufacturing upgrades. However, this technology still faces significant 
bottlenecks in practical applications: the complexity of the additive manufacturing process itself, the 
uncertainty of material properties, and the difficulty of product quality control. These problems together restrict 
its further large-scale and high-quality development. In this context, machine learning, as a tool with powerful 
data analysis and pattern recognition capabilities, provides an innovative solution to overcome the above 
bottlenecks. Through various machine learning algorithms, accurate optimization of additive manufacturing 
process parameters can be achieved, the accuracy of material performance prediction can be effectively 
improved, and real-time monitoring and dynamic quality control of the manufacturing process can be 
conducted, showing important application value and potential in this field. 

Although many studies have focused on the application of machine learning in additive manufacturing, 
many challenges remain to be solved in how to use such methods systematically to effectively improve the 
efficiency and product quality of additive manufacturing, and a systematic summary of the research status in 
the field and an analysis of existing disputes are lacking. In view of this, this paper aims to review the research 
progress in additive manufacturing optimization and quality control based on machine learning over the past 
three years. On the one hand, it reveals the current research hotspots, core status and existing disputes. On the 
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other hand, it deeply discusses the future development trends and potential challenges in this field to provide 
a valuable reference for researchers in related fields and then promotes the development of additive 
manufacturing technology based on machine learning in a more efficient and reliable direction. 

2. Optimization of Additive Manufacturing via Machine Learning 
The quality and efficiency of additive manufacturing (AM) are highly dependent on the control of process 

parameters and material properties. The traditional trial-and-error method has difficulty coping with the 
complex requirements of multiparameter coupling and multiobjective optimization. With the ability of data-
driven pattern recognition and prediction, machine learning can achieve precise control of the whole process 
from process parameter optimization to material performance prediction and provide an effective way to solve 
the core problem of unclear 'process–structure-performance' correlations in additive manufacturing. 

2.1 Optimization of Process Parameters 
The process parameters are the key variables for determining the forming quality of additive manufacturing 

parts. The synergy between different parameters directly affects the molten pool behavior, interlayer bonding 
and final mechanical properties. Machine learning can efficiently screen the optimal parameter combination 
and reduce the test cost and number of cycles by constructing a mapping model of parameters and forming 
indices. The following two core variables are discussed from static parameters (layer thickness and laser power) 
and dynamic parameters (scanning speed and wire feeding speed). 

2.1.1 Layer Thickness and Laser Power 
Layer thickness and laser power are the basic parameters for regulating energy input and forming accuracy 

in additive manufacturing. The layer thickness directly affects the degree of interlayer fusion and surface 
roughness, whereas the laser power affects the temperature of the molten pool and the melting adequacy of 
materials. Both of these factors influence the density and mechanical properties of parts. 

In the study of laser cladding on inclined substrates, Yue (2022) used the laser power, layer thickness 
(indirectly related to cladding layer accumulation), scanning speed and powder feeding rate as input variables 
and constructed a prediction model of single-channel/multichannel coating morphology (width, height, peak 
offset) through an orthogonal test design. By comparing the three algorithms of support vector regression 
(SVR), particle swarm optimization back propagation neural network (PSO-BPNN) and extreme gradient 
boosting (XGBoost), the XGBoost model performs best, and the prediction determination coefficients (R2) for 
the coating width, height and peak offset are 0.9578, 0.9419 and 0.8765, respectively, which can accurately 
capture the nonlinear relationship between the parameters and morphology (see the XGBoost prediction results 
in Figure 1). The study also verified that when the laser power is insufficient or the layer thickness is too large, 
the coating is prone to incomplete fusion defects; the high power leads to splashing of the molten pool, which 
provides a basis for the preliminary screening of the parameter interval. 

Figure 1: Prediction results of the XGBoost model (X. Li et al., 2025) 

   
Yuan (2023) further incorporated the layer thickness, laser power, scanning distance and scanning speed in 

the study of laser powder bed melting (L-PBF) to form 316 L stainless steel and constructed a multiparameter-
mechanical property prediction model. The results show that the random forest algorithm has the highest 
prediction accuracy for tensile strength (R2 = 0.988), and the sensitivity analysis reveals that the laser power 
(contribution ratio of 35%) and layer thickness (contribution ratio of 28%) are the top 2 parameters affecting 

https://www.zeuspress.org/


zeuspress.org ; Computers and Artificial Intelligence; Vol.2, No.3 2025 

 65 

the tensile strength. When the layer thickness ranges from 0.1~0.15 mm and the laser power ranges from 
180~220 W, the density of parts can reach more than 99.2%, and the tensile strength is stable at 580~620 MPa. 

In addition, Mahmoud et al. (2024) quantified the influence of layer thickness and filling density on the 
hardness of polycarbonate (PC) parts through heatmap analysis (see Figure 2). The layer thickness was 
negatively correlated with hardness (correlation coefficient of −0.44), and the laser power indirectly affected 
hardness by regulating the fusion quality, which further confirmed the universal regulation value of these two 
parameters in different material systems. 

Figure 2: Heatmap showing the relationships between the process parameters and hardness (Mahmoud et al., 2024) 

 
2.1.2 Scanning Speed and Wire Feeding Speed 

Compared with static parameters such as layer thickness and laser power, scanning speed (laser/print head 
moving speed) and wire feeding speed (for arc additive manufacturing and laser fuse deposition) are dynamic 
parameters that directly affect the forming efficiency and molten pool stability: excessively slow scanning 
speeds can easily lead to heat accumulation and overburning, and excessively fast speeds can cause insufficient 
melting of materials. The mismatch between the wire feeding speed and the scanning speed will lead to 
undermelting or overflow, and the collaborative optimization of the two is the key to improving the forming 
consistency. 

In a study of laser cladding on the same inclined substrate, Yue (2022) synchronously analysed the influence 
of the scanning speed and powder feeding rate (similar to the wire feeding speed) and reported that the 
sensitivity coefficient of the XGBoost model to the scanning speed was 0.32, which was significantly greater 
than those of other algorithms (SVR: 0.21; PSO-BPNN: 0.27). When the scanning speed increases from 5 
mm/s to 15 mm/s, the coating width decreases from 2.8 mm to 1.6 mm, and the matching interval of the 
'scanning speed‒powder feeding rate' can be found through model optimization (such as a scanning speed of 
8--10 mm/s and a powder feeding rate of 1.2--1.5 g/min), such that the qualified rate of coating formation 
increases from 68% to 92%. 

For the selective laser melting (SLM) of Ti-6Al-4 V, Zou Miao (2023) further constructed the XGBoost 
model through hyperparameter optimization to realize the coupling prediction of the scanning speed, wire 
feeding speed (corresponding to the wire feed rate here), weld pool characteristics (weld pool depth, width) 
and relative density. The results show that the predicted root mean square error (RMSE) of the optimized 
model for relative density is only 0.87%, and when the ratio of the scanning speed to the wire feeding speed is 
0.8–1.2, the molten pool flow is the most stable, and the porosity can be controlled below 0.5%. 

Notably, Zhang et al. (2025) studied arc additive manufacturing (WAAM) found through heatmap analysis 
(similar to the parameter correlation analysis in Figure 2) that the interaction between the scanning speed and 
wire feeding speed contributed 42% to the weld bead height, which was much greater than the influence of a 
single parameter (scanning speed: 23%, wire feeding speed: 18%). This also explains why machine learning 
models (such as XGBoost and random forest) perform better in multiparameter collaborative optimization, as 
they can effectively capture the interaction effect between parameters. 
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2.2 Material Performance Prediction and Process Monitoring 
Process parameter optimization provides a basis for the 'process control' of additive manufacturing, and 

material performance prediction and process monitoring are the core links of the 'result guarantee'. By 
integrating process data, thermal simulation information and sensing signals, machine learning can realize 
closed-loop control from performance prediction to real-time defect detection and compensate for the lag of 
traditional offline detection. 

2.2.1 Prediction of Mechanical Properties 
The mechanical properties of additive manufacturing materials (such as hardness, tensile strength, and 

fatigue life) are the core indicators for evaluating the service ability of parts. The traditional evaluation methods 
that rely on tests are costly and long-term. Machine learning can achieve rapid prediction and optimization of 
performance by constructing a 'process–structure–performance' correlation model. 

For SLM-processed Ti-6Al-4 V, Zou (2023) compared XGBoost, random forest and support vector 
machine (SVM) models with laser power, scanning speed and layer thickness as inputs and relative density 
and tensile strength as outputs. The prediction R2 of the XGBoost model for tensile strength was 0.96, and it 
was clear that the laser power (contribution ratio of 38%) was the key parameter for regulating strength through 
feature importance analysis. When the laser power increased from 150 W to 200 W, the tensile strength 
increased from 860 MPa to 920 MPa. The deviation from the model prediction is only 2.1%. 

Cai (2023) further incorporated the printing temperature and layer thickness into a performance prediction 
model in the research of 3D-printed polypropylene (PP) matrix composites. Machine learning can effectively 
predict the dynamic mechanical properties of materials: at a lower printing layer thickness (0.1~0.15 mm) and 
printing temperature (190~200°C), the material interface is more closely combined, the storage modulus is 
15%~20% greater than the traditional parameters, and the prediction error of the random forest model for the 
storage modulus is less than 5%. 

Hu et al. (2024) noted that the advantages of machine learning in performance prediction are reflected not 
only in the improvement in accuracy (the average R2 is 0.15~0.25 higher than that of the traditional empirical 
model) but also in the reduction in test cost (40%~60% reduction in test volume) and accelerated evaluation 
cycle (from weeks to hours). However, it should be noted that data quality and dataset size significantly affect 
the generalization ability of the model. When the amount of data is insufficient (such as less than 50 groups), 
the model is prone to overfitting. At this time, data enhancement techniques (such as generative adversarial 
networks) or physical information neural networks (PINNs) need to be combined to improve robustness. 

2.2.2 Thermal Simulation and Defect Detection 
Thermal simulation can reveal the temperature field distribution and molten pool behavior in the additive 

manufacturing process, and defect detection directly guarantees the structural integrity of the parts. The 
combination of the two is the key to achieving 'defect-free forming'. Machine learning significantly improves 
monitoring efficiency and accuracy by replacing traditional time-consuming numerical simulations (such as 
finite element analysis) and automated defect recognition. 

Ghansiyal, Ehmsen, et al. (2025) proposed a thermal simulation framework based on a graph neural network 
(GNN) (see Figure 3), which uses the laser power, scanning speed, and laser radius as inputs to predict the 
temperature distribution during laser powder bed melting (PBF-LB). The model shortens the simulation time 
from 9.61 s for the traditional numerical method to 3.31 s, and the mean square error (MSE) of the temperature 
distribution prediction is only 7.67 (see the temperature distribution comparison of t = 3 s, 20 s, and 40 s in 
Figure 4), which can quickly screen the optimal parameter combination of energy efficiency (such as a laser 
power of 3~5 W/mm2 and a scanning speed of 1~2 mm/s). 
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Figure 3: GNN Architecture (Ghansiyal, Ehmsen, et al., 2025) 

 

Figure 4: Visual comparison of the temperature predictions made for experiment 1 (Ghansiyal, Ehmsen, et al., 
2025) 

 
In terms of defect detection, Kononenko et al. (2023) proposed an in situ crack detection system based on 

acoustic emission (AE) and machine learning (see Figure 5). The crack signal and background noise were 
collected by an AE sensor, and the features were extracted via principal component analysis (PCA). K-nearest 
neighbor (KNN), SVM and other algorithms were used for classification. The KNN model had an accuracy of 
99% for crack recognition, and the response time was less than 1 ms, which could realize real-time defect 
warning in the printing process. 

Figure 5. Schematics of the in situ system for crack detection in the L-PBF process. (a) Experimental setup of the L-
PBF machine accompanied by the AE monitoring system for specimen quality control. (b) Processing of the AE signal 

involves threshold-based detection of the event from the audio stream and performance of the binary classification 
procedure to reveal cracks (Kononenko et al., 2023) 

 
In a study of additive manufacturing of nickel-based superalloys, Mu et al. (2024) further combined 

thermodynamic calculations and machine learning to construct a prediction model of hot cracking sensitivity: 
with the cooling rate and temperature gradient as inputs and the hot cracking sensitivity coefficient (CSC) as 
the output, the random forest model has R2 values of 0.96 and 0.81 in the training set and the verification set, 
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respectively, which can accurately identify the process interval prone to cracking (for example, when the 
cooling rate is less than 100°C/s, the CSC is greater than 0.6, and the risk of cracking is significantly increased). 

3. Quality Control and Monitoring 
The quality fluctuation of additive manufacturing (AM) is the core bottleneck restricting its industrial 

application. Especially in metal and high-performance polymer additive manufacturing, small fluctuations in 
process parameters may lead to defects such as pores and cracks, which in turn deteriorate the mechanical 
properties. Machine learning technology provides a new way to solve this problem through data-driven real-
time monitoring and predictive modelling. The following systematically reviews the application status, 
challenges and typical cases of machine learning in AM quality control from the two dimensions of real-time 
process monitoring and data-driven quality assessment. 

3.1 Real-time Process Monitoring 
Real-time process monitoring focuses on the state perception and defect warning of AM 'forming'. Through 

machine learning, real-time analysis of sensor data (such as acoustic emission, molten pool images, and 
temperature signals) is carried out to realize real-time identification of defects and dynamic adjustment of 
process parameters to reduce the cost of 'postdetection'. Its core technical branches include online defect 
detection and simulation prediction models. 

3.1.1 Online Defect Detection 
On-line defect detection technology based on machine learning constructs classification or regression 

models by extracting characteristic signals (such as acoustic emission and weld pool morphology) in the AM 
process to realize real-time identification of typical defects such as cracks and pores and incomplete fusion. At 
present, this technology has shown high accuracy in laser powder bed melting (LPBF), arc additive 
manufacturing (WAAM) and other processes, but it still faces two core challenges: data preparation and model 
generalization. 

From the perspective of technical application, Kononenko et al. (2023) proposed an in situ crack detection 
system based on acoustic emission (AE) and machine learning for LPBF-formed Al‒Mn‒Ce alloys (Figure 5). 
In this study, the acoustic signal in the forming process was collected by a high-sensitivity AE sensor, and a 2 
V threshold was set to intercept a 2 ms-long signal fragment (a total of 379 events, including 196 crack signals 
and 183 noise signals). Principal component analysis (PCA) was used to reduce the dimension of the signal 
spectrum, and five classification models, such as logistic regression and random forest (RF), were constructed. 
The results show that the classification accuracy of the RF model based on the principal component of the 
spectrum is 99%, and single-event detection takes only 1 ms, which meets real-time requirements. In addition, 
Zhu (2023) used support vector regression (SVR), limit gradient boosting (XGBoost) and a back propagation 
neural network (BPNN) to predict the weld pool size for surface morphology detection during laser deposition 
additive manufacturing. The prediction error of the XGBoost model for the weld width is less than 0.1 mm, 
and a dataset expansion method based on transfer learning is proposed to solve the problem of the difficult 
preparation of profiled part morphology data. 

However, the industrial application of this technology is still limited by two challenges: the difficulty of 
data preparation and the weak generalization ability of the model. 

Data preparation challenge: High-quality labelled data are scarce, and the preparation cost is high. On 
the one hand, AM defect samples (such as cracks and keyhole pores) have a low incidence in normal processes 
(usually < 5%), resulting in an imbalanced dataset category. For example, in the study of Kononenko et al. 
(2023), the proportion of noise samples is 48.3%, which is significantly different from the scene of 'fewer 
defects and more normal samples' in actual production, which directly leads to an increase in the false detection 
rate of the model in the industrial field from 2% in the laboratory to 8%. On the other hand, defect labelling 
relies on professionals and high-precision detection equipment (such as X-ray CT). For example, Zhu (2023) 
combined an optical microscope and a three-dimensional profilometer to label weld pool morphology data. 
Single-sample labelling takes more than 30 minutes, which restricts the scale expansion of the dataset. 
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Model generalization challenge: The model is susceptible to differences in materials and equipment and 
has poor cross-scene adaptability. For example, Kononenko et al.'s (2023) crack detection model has an 
accuracy of 99% for an Al-Mn-Ce alloy, but when it migrates to a Ti-6Al-4 V alloy, the accuracy decreases 
sharply to 72% because of the significant difference in the acoustic emission signal characteristics (such as the 
frequency distribution and amplitude) between the two materials. Similarly, Zhu (2023) weld pool size 
prediction model performs well on 316 L stainless steel (RMSE = 0.12 mm). However, when Ti-6Al-4 V is 
applied, the dynamic characteristics of the weld pool change due to the difference in metal thermal conductivity, 
and the RMSE increases to 0.35 mm, which cannot meet the accuracy requirements. 

3.1.2 Simulation and Prediction Models 
The machine learning simulation and prediction model can predict the density, mechanical properties and 

defect risk of AM parts in advance by constructing a mapping relationship between process parameters and 
forming quality and reducing the cost of trial and error. At present, this kind of model has been used for 
parameter optimization in SLM, WAAM and other processes, but it still faces the problems of insufficient 
dataset integrity and insufficient integration of physical mechanisms. 

In typical applications, Zou (2023) developed a mechanical property prediction model based on XGBoost, 
SVR and an ANN for SLM-formed Ti-6Al-4 V (Figure 6). Through hyperparameter optimization (such as 
when the tree depth of XGBoost is set to 8 and the learning rate is 0.1), the model's prediction R2 for relative 
density is 0.94, and the prediction RMSE for the weld pool depth is only 0.02 mm. The optimized XGBoost 
model is three times more efficient than the ANN in calculation. In addition, Mu et al. (2023) combined 
thermodynamic calculations and machine learning to establish a crack sensitivity prediction model for nickel-
based superalloys. The random forest regression (RFR) algorithm showed good prediction ability on both the 
training set (R2 = 0.96) and the validation set (R2 = 0.81) and could quickly evaluate hot crack sensitivity 
coefficients (such as FR and CSC). Hu et al. (2024) also reviewed the application of physical information 
neural networks (PINNs) in AM performance prediction. For example, after the PINN fuses the heat 
conduction equation, the prediction error of the Inconel 718 fatigue life is 40% lower than that of the traditional 
ANN. 

Figure 6. The trained XGBoost model is used to perform regression analysis on the training dataset and the 
invisible test dataset. (a) Experimental and predicted values of the relative density; the solid line y = x is the reference 

line. (b) Training data. The relative error distributions between the set and the invisible test dataset (Zou, 2023) 

 

The core challenges faced by such models include the following: 

The integrity of the dataset is insufficient: the existing dataset covers a limited range of process 
parameters, and the prediction accuracy decreases after exceeding the range. For example, Zou's (2023) model 
focuses only on the parameter range of laser power 180--220 W and a scanning speed of 600--800 mm/s. When 
the laser power is reduced to 160 W, the relative density prediction RMSE increases from 0.5% to 2.5%, and 
the physical mechanism changes caused by the 'spheroidization effect' at low power are not covered by the 
dataset. In addition, differences in the raw materials (such as the powder particle size distribution and impurity 
content) also affect the accuracy of the model. Mu et al.'s (2023) study revealed that when the Al content in 
nickel-based alloy powder fluctuates by ± 0.1%, the prediction error of crack sensitivity increases by 15%. 
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Poor interpretability: Most machine learning models (such as ANN and XGBoost) are 'black box' models, 
which have difficulty correlating physical mechanisms and restrict process optimization guidance. For 
example, although the XGBoost model can accurately predict the size of the molten pool, it cannot explain the 
quantitative relationship between the laser power and the depth of the molten pool. Although the PINN 
improves interpretability by incorporating a physical equation, it requires more data (at least 500 sets of 
samples), and the computational complexity is 2--3 times greater than that of the traditional model. 

3.2 Data-driven Quality Assessment 
Real-time process monitoring focuses on 'in-process' defect identification, whereas data-driven quality 

assessment starts from the 'data life cycle'. Through systematic experimental design and data collection, 
combined with machine learning algorithms, a closed loop of 'ex ante' process optimization and 'ex post' 
performance evaluation is realized, which is the core support of AM quality control. Its technical system 
includes two links: data acquisition and preprocessing and machine learning algorithm application. 

3.2.1 Data Acquisition and Preprocessing 
High-quality data constitute the basis of data-driven quality assessment. It needs to be obtained through 

scientific experimental design and multisensor fusion and preprocessed to eliminate noise and deviation to 
provide reliable input for subsequent modelling. At present, mainstream data acquisition methods include flux 
experiments (such as Taguchi, Box–Behnken design) and multisensor synchronous acquisition, and 
preprocessing focuses on noise removal and data completion. 

In terms of experimental design and data acquisition, the Box–Behnken design is widely used in AM data 
acquisition because it can effectively cover the interaction effect of parameters. For example, in the study of 
SLM forming Ti-6Al-4 V, Zou (2023) used a Box–Behnken design to construct a parameter matrix of 5 factors 
(laser power, scanning speed, powder layer thickness, scanning spacing, and substrate temperature) at 3–5 
levels. A total of 120 groups of experiments were carried out, and 20 indices, such as relative density, molten 
pool morphology and tensile strength, were collected synchronously to form a structured dataset (Table 1), 
which provided sufficient samples for the subsequent XGBoost model. In addition, multisensor fusion has 
become a trend. X. Li et al. (2025) integrated an infrared pyrometer (sampling rate of 1 kHz, monitoring the 
temperature of the molten pool) and a high-speed camera (frame rate of 1000 fps, capturing the shape of the 
molten pool) in laser additive manufacturing. The amount of data collected per day is up to 5 GB, and the data 
are transmitted synchronously through Ethernet. The time deviation between the temperature data of the molten 
pool and the shape data is less than 1 ms. 
Table 1: SLM process parameters and their ranges for generating data (Zou, 2023) 

Process Parameters Unit Value 
Laser scanning speed mm/s 800, 900, 1000, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 

1900, 2000, 2100, 2200, 2300, 2400, 2500 
Laser power W 80, 90, 95, 100, 105, 110, 115, 120, 130, 135, 140, 145, 

150, 155, 160, 165, 170, 175, 180 
Hatch distance μm 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 10 
Power layer thickness μm 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80 

Data preprocessing is a key step in improving the accuracy of modelling. It mainly solves three major 
problems: 

Noise removal: Interference signals in the AM process (such as spatter and arc light) can cause data 
distortion. For example, X. Li et al. (2025) used Gaussian filtering (σ = 1.5) to remove the splash noise in the 
weld pool image, which improved the accuracy of subsequent CNN defect recognition by 8%. Kononenko et 
al. (2023) used 50–600 kHz bandpass filtering for AE signals to filter out the background noise (600 kHz) of 
an air pump, and the signal‒to‒noise ratio was increased from 20 dB to 35 dB. 

Missing value completion: Sensor failure or equipment interruption leads to data loss, which needs to be 
repaired via interpolation. For example, H. Wang et al. (2025) used the K-nearest neighbor interpolation 
method to fill the missing values in the tensile strength data (missing rate < 5%) in the performance evaluation 
of AM materials. The standard deviation of the repaired data and the original data is less than 3%. 
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Data standardization: Dimensional differences in different parameters (e.g., the laser power unit is W and 
the scanning speed is mm/s) affect the convergence of the model. Zou (2023) used the Z score to standardize 
the processing parameters so that the mean value of each feature was 0, the standard deviation was 1, and the 
training convergence speed of the XGBoost model was increased by 40%. 

3.2.2 Application of Machine Learning Algorithms in Quality Assessment 
Different machine learning algorithms have different advantages in AM quality assessment because of their 

different structural characteristics: tree-based algorithms (such as XGBoost and RF) are good at addressing 
nonlinear parameter interactions; deep learning algorithms (such as CNN and LSTM) are suitable for image 
and time series data; and physical information models (such as the PINN) can balance data requirements and 
physical consistency. The following, combined with typical cases and data comparisons, explains its 
application characteristics: 

1) Tree-based algorithm: parameter optimization and performance prediction 

The tree-based algorithm has become the mainstream choice for AM quality assessment because of its 
strong anti-overfitting ability and good interpretability. Zou (2023) compared the prediction performance of 
XGBoost, RF and SVR on the relative density of Ti-6Al-4 V (Table 2). The results show that the XGBoost 
model with optimized hyperparameters has an R2 of 0.94 and an RMSE of only 0.5%, which is significantly 
better than those of the RF (R2 = 0.91, RMSE = 0.7%) and SVR (R2 = 0.87, RMSE = 1.2%) models. The 
advantage of this approach is that it can capture the coupling effect of the laser power-scanning speed when 
the laser power increases from 180 W to 220 W. The optimal range of scanning speeds that XGBoost can 
identify is from 600–700 mm/s to 700–800 mm/s. In addition, Huang et al. (2025) used the RF algorithm to 
predict the fatigue life of Al-Si-Mg alloys. On the basis of eight characteristics, such as porosity and grain size, 
the average error of the model is less than 5%, and the efficiency is 10 times greater than that of the traditional 
finite element method (24 h/sample), which can quickly screen the combination of process parameters with 
excellent fatigue performance. 
Table 2: Comparison of the prediction results of the SVR, ANN and optimized XGBoost models on unseen test sets (Zou, 
2023) 

Test SVR ANN Optimized XGBoost 
MAE 1.3344 0.8576 0.8011 
RMSE 4.8646 1.7316 1.7171 
𝑅2 0.7687 0.7849 0.9184 

2) Deep learning: image and time series data processing 

Deep learning is especially suitable for unstructured data in AMs (such as molten pool images and 
temperature time series). X. Li et al. (2025) used a CNN to process LPBF weld pool images (resolution 224 × 
224), and the recognition accuracy of three types of defects, 'unfused', 'keyhole pores' and 'spheroidization', 
reached 97%. The confusion matrix revealed that the recall rate of 'unfused' defects was 95%, which was better 
than that of the traditional threshold segmentation method (82%). 

3) Physical information model: Balancing data and physical mechanism 

To address the "strong data dependence" problem of traditional machine learning, a physical information 
neural network (PINN) reduces the data requirements and improves the generalization ability by incorporating 
AM's physical equations (such as the heat conduction equation and fluid flow equation). Hu et al. (2024) 
reported that in the fatigue life prediction of Inconel 718, only 100 groups of samples were required to achieve 
the accuracy of the traditional ANN (500 groups of samples) (R2 = 0.92). In the cross-material prediction 
(migration from Inconel 718 to Hastelloy X), the RMSE increased by only 0.8%, which was significantly better 
than that of the traditional model (which increased by 2.5%). 

4. Future Challenges and Development Directions 

4.1 Data Standardization and Sharing 
This section discusses the importance of data standardization and sharing in the optimization and quality 

control of additive manufacturing based on machine learning. Su et al. (2022) noted that machine learning 
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requires a large amount of database as the training support of the model, so the construction and development 
of the database is the premise of machine learning. They emphasized that with the development of data mining 
technology for material experiments, a rich database would be conducive to promoting the development of 
new materials in the field of additive manufacturing. In addition, Yuan et al. (2025) mentioned that there are 
still some shortcomings in the current machine learning methods in AM. For example, in data processing, the 
dual constraints of massive data demand and difficulty in obtaining high-quality annotation data and an uneven 
distribution of data weakens the generalization energy of the model, resulting in a significant decrease in 
accuracy of the model for new data scenarios. In summary, data standardization and sharing are important for 
improving the prediction accuracy and generalizability of machine learning models in additive manufacturing. 
Therefore, it is necessary to strengthen the construction of data standardization and sharing mechanisms. 

4.2 Multiscale Modelling and Simulation 
This section discusses the application of multiscale modelling and simulation in additive manufacturing 

and how to improve the prediction accuracy through machine learning technology. Combined with machine 
learning technology and multiscale modelling methods, H. Wang et al. (2025) carried out multiscale analysis 
and optimized the design for the fracture toughness of materials and improved their fracture toughness. By 
evaluating the fracture toughness of a material, damage to the material under different working conditions can 
be predicted, which provides an important reference for the design and practical application of the process. In 
addition, Hu et al. (2024) summarized a multiscale modelling method for the performance prediction of 
composite materials in additive manufacturing and noted that machine learning technology can be combined 
with a multiscale modelling method to effectively couple information at different scales to realize the full 
prediction of the fatigue and creep properties of materials. Through deep learning technology, the correlation 
between different scales is learned, and the prediction accuracy of the model is improved. In summary, 
multiscale modelling and simulation combined with machine learning technology provide an effective and 
accurate solution for the performance prediction of additive manufacturing materials. Future research should 
further explore how to optimize these models to better serve actual applications. 

4.3 Interdisciplinary Cooperation and Technological Innovation 
This section discusses how interdisciplinary cooperation and technological innovation can promote the 

progress of the optimization and quality control of additive manufacturing. Su et al. (2022) reviewed the 
optimization of additive manufacturing processes on the basis of machine learning and the research and 
development progress of new materials and emphasized the application of machine learning in additive 
manufacturing, including forming process monitoring and quality control, window prediction and deposition 
path optimization. In addition, they noted that the development of machine learning technology relies on a 
reliable dataset, which provides a solid foundation for the development of new materials in the field of additive 
manufacturing. Cao et al. (2024) further discussed the application of machine learning in additive 
manufacturing, including model parameter selection, defect and performance prediction, in situ monitoring 
and composition optimization, process optimization and structure optimization, with the aim of providing 
guidance for process control and performance optimization of additive manufacturing. Hu et al. (2024) focused 
on the application of machine learning in the mechanical property prediction of alloy materials for additive 
manufacturing and mentioned physics-informed machine learning methods. This method can better handle the 
complex nonlinear relationships between high-dimensional physical quantities, providing a new perspective 
for the mechanical property prediction of additive manufacturing materials and components. Huang et al. (2025) 
studied the application of machine learning in the fatigue life prediction of additive manufacturing and 
proposed that by combining physical mechanism knowledge with machine learning, the internal prediction 
mechanism of the model can be clarified, and the profit rate and calculation efficiency of the data can be 
improved. In summary, interdisciplinary cooperation and technological innovation have played important roles 
in the field of additive manufacturing. The application of machine learning technology not only improves the 
efficiency of art optimization and quality control but also provides new ideas for the research and development 
of new materials. 

5. Conclusion 
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This paper reviews the research progress of additive manufacturing optimization and quality control based 
on machine learning over the past three years and analyses three core dimensions in detail: process parameter 
optimization, material performance prediction, quality control and process monitoring. Machine learning 
technology has significant application potential in the field of additive manufacturing, especially in the 
accurate optimization of process parameters and real-time monitoring of manufacturing processes, which can 
effectively improve the production efficiency and product quality stability of additive manufacturing. However, 
current related research still faces urgent challenges, which are reflected mainly in the lack of unified standards, 
the efficient sharing mechanism of data, and the immaturity of multiscale modelling and simulation technology. 
Although the existing research has achieved certain results in local applications, a systematic solution has not 
yet been developed, and it is difficult to fully meet the needs of large-scale and high-precision development of 
additive manufacturing. Therefore, future research should prioritize the establishment of unified additive 
manufacturing data standards and the improvement of cross-institutional data sharing mechanisms while 
strengthening the deep cross-integration of materials science, computer algorithms, mechanical engineering 
and other disciplines and breaking through technical bottlenecks with interdisciplinary innovation. Through 
the above path, the overall improvement in additive manufacturing optimization and quality control ability is 
finally realized, which provides strong support for the wide application of additive manufacturing technology 
in key fields, such as aerospace, medical, and automobile. 

References 
Cai, R. (2023). Research on dynamic mechanical properties of polypropylene composites by machine learning 

assisted additive manufacturing [Master's thesis, Central South University]. CNKI. 
https://doi.org/10.27661/d.cnki.gzhnu.2023.002744 

Cao, Y., Chen, C., Guo, K., Hu, T., Xu, S., Wang, J., & Ren, Z. (2024). Progress in application of machine 
learning in additive manufacturing technology. Tezhong Zhuzao Ji Youse Hejin/Special Casting and 
Nonferrous Alloys, 44(11), 1454-1465. https://doi.org/10.15980/J.TZZZ.2024.11.003 

Ghansiyal, S., Ehmsen, S., Klar, M., & Aurich, J. C. (2025). Thermal simulations in additive manufacturing 
using machine learning. Procedia CIRP, 135, 344-349. https://doi.org/10.1016/J.PROCIR.2024.12.029 

Hu, Y., Yu, H., Wu, S., Ao, N., Kan, Q., Wu, Z., & Kang, G. (2024). Research progress and challenges of 
mechanical properties prediction of additive manufacturing alloy materials based on machine learning. 
Journal of Mechanics, 56(7), 1892-1915.  

Huang, X., Wang, D., Zhou, J., & Li, M. (2025). The application of machine learning in fatigue life prediction 
of light alloys in additive manufacturing. Chinese Journal of Nonferrous Metals, 35(5), 1549-1564.  

Kononenko, D. Y., Nikonova, V., Seleznev, M., van den Brink, J., & Chernyavsky, D. (2023). An in situ crack 
detection approach in additive manufacturing based on acoustic emission and machine learning. Additive 
Manufacturing Letters, 5, Article 100130. https://doi.org/10.1016/J.ADDLET.2023.100130 

Li, X., Zhang, L., & Li, J. (2025). Machine learning and its applications in laser additive manufacturing. 
Shanghai Metal, 47(04), 1-12. https://doi.org/10.19947/j.issn.1001-7208.2024.02.04 

Mahmoud, H. A., Shanmugasundar, G., Vyavahare, S., Kumar, R., Cep, R., Salunkhe, S., Gawade, S., & 
Abouel Nasr, E. S. (2024). Prediction of machine learning-based hardness for the polycarbonate using 
additive manufacturing. Frontiers in Materials, 11, Article 1410277. 
https://doi.org/10.3389/FMATS.2024.1410277 

Mu, Y., Liang, J., Li, J., Zhou, Y., & Sun, X. (2024). Machine learning-based design of superalloys for additive 
manufacturing: Research status and future trends. Intelligent Security, 3(2), 96-112.  

Mu, Y., Zhang, X., Chen, Z., Sun, X., Liang, J., Li, J., & Zhou, Y. (2023). Crack sensitivity prediction model 
of additive manufacturing nickel-based superalloy based on thermodynamic calculation and machine 
learning. Journal of Metals, 59(8), 1075-1086.  

Su, J., Chen, L., Tan, C., Chew, Y., Weng, F., Yao, X., Jiang, F., & Teng, J. (2022). Progress in machine-
learning-assisted process optimization and novel material development in additive manufacturing. Chinese 
Journal of Lasers, 49(14), 11-22. https://doi.org/10.3788/CJL202249.1402101 

https://www.zeuspress.org/
https://doi.org/10.27661/d.cnki.gzhnu.2023.002744
https://doi.org/10.15980/J.TZZZ.2024.11.003
https://doi.org/10.1016/J.PROCIR.2024.12.029
https://doi.org/10.1016/J.ADDLET.2023.100130
https://doi.org/10.19947/j.issn.1001-7208.2024.02.04
https://doi.org/10.3389/FMATS.2024.1410277
https://doi.org/10.3788/CJL202249.1402101


zeuspress.org ; Computers and Artificial Intelligence; Vol.2, No.3 2025 

 74 

Wang, H., Wang, B., Gao, S., Liu, J., Li, S., & Ji, H. (2025). Research progress of machine learning assisted 
additive manufacturing materials and mechanical properties evaluation of components. Aeronautical 
manufacturing technology, 68(7), 40-55. https://doi.org/10.16080/j.issn1671-833x.2025.07.040 

Yuan, H., Tian, Y., He, G., Wang, Y., & Yu, J. (2025). Application of machine learning in additive 
manufacturing in the field of nuclear energy. Science and Technology Vision, 15(8), 60-63.  

Yuan, Z. (2023). Research on prediction of mechanical properties of 316L stainless steel parts formed by laser 
powder bed melting based on machine learning [Master's thesis, Zhejiang University]. CNKI. 
https://doi.org/10.27461/d.cnki.gzjdx.2023.002426 

Yue, X. (2022). Research on optimization of laser additive manufacturing process for inclined substrate based 
on machine learning [Master's thesis, China University of Mining and Technology]. CNKI. 
https://doi.org/10.27623/d.cnki.gzkyu.2022.000177 

Zhang, H., Wu, Q., Guo, W., & Tang, W. (2025). Application of machine learning in arc additive 
manufacturing. Hot working process, 19, 10-20+26. https://doi.org/10.14158/j.cnki.1001-3814.20240531 

Zhu, X. (2023). Size prediction and surface morphology detection of laser deposition additive manufacturing 
deposition layer based on machine learning principle [Master's thesis, Harbin Engineering University]. 
CNKI. https://doi.org/10.27060/d.cnki.ghbcu.2023.002010 

Zou, M. (2023). Research on predicting the mechanical properties of Ti-6Al-4V by additive manufacturing 
based on machine learning methods [Master's thesis, Nanchang Hangkong University]. CNKI. 
https://doi.org/10.27233/d.cnki.gnchc.2023.001019 

Funding 
This research received no external funding.  

Conflicts of Interest 
The authors declare no conflict of interest. 

Acknowledgment 
This paper is an output of the science project. 

Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.This is 
an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/). 
 

https://www.zeuspress.org/
https://doi.org/10.16080/j.issn1671-833x.2025.07.040
https://doi.org/10.27461/d.cnki.gzjdx.2023.002426
https://doi.org/10.27623/d.cnki.gzkyu.2022.000177
https://doi.org/10.14158/j.cnki.1001-3814.20240531
https://doi.org/10.27060/d.cnki.ghbcu.2023.002010
https://doi.org/10.27233/d.cnki.gnchc.2023.001019

