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Abstract 

We introduce a novel hybrid deep learning module, termed the Mamba-Spatial-Temporal Generator (MSTG), 
which integrates the strengths of Convolutional Neural Networks (CNNs) with the advanced Mamba 
architecture. While conventional CNNs are effective in extracting local features within diffusion models, their 
limited receptive field restricts their capacity to capture long-range dependencies. To overcome this limitation, 
MSTG first employs CNN-based convolutional and pooling layers to extract multi-level local features, and 
subsequently incorporates Mamba blocks founded on State Space Models (SSMs). Owing to its linear 
computational complexity and powerful long-sequence modeling capability, Mamba adaptively selects and 
fuses global contextual information. Through this synergistic design, MSTG retains the local perceptual 
advantages of CNNs while simultaneously leveraging the global dynamic modeling capacity of Mamba. As a 
result, it significantly improves the understanding of complex spatial and sequential dependencies without 
compromising computational efficiency. This module has a clear structure and good scalability, providing a 
new and effective way to improve the performance of cardiac medical image generation tasks for 4D data. 

Keywords 

medical image generation, Mamba, 4-dimensional data, long-range dependencies, diffusion model 

 

1. Introduction 
Denoising Diffusion Probabilistic Models (DDPMs), as an emerging class of generative models, have 

demonstrated remarkable potential in medical image synthesis. In recent years, with the rapid advancement of 
deep learning, image generation has become a central research focus in computer vision. Traditional 
approaches, such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), have 
long served as mainstream frameworks (Müller-Franzes et al., 2022). However, in the past few years (Huang, 
2024; Liu et al., 2023), the superior ability of DDPMs to generate high-quality synthetic images has 
increasingly surpassed that of GANs in natural image generation. Their importance is particularly evident in 
medical imaging, where issues of confidentiality and privacy significantly constrain the acquisition, annotation, 
and sharing of medical data (Khadra & Türkbey, 2024; Khazrak et al., 2024; Khosravi et al., 2023). Challenges 
such as privacy concerns and the scarcity of disease-specific data often result in datasets that are small and 
imbalanced, thereby hindering the development of accurate medical image classification models (Khazrak et 
al., 2024). Moreover, producing high-quality medical image annotations requires not only precision but also 
sufficiently diverse datasets to cover the full spectrum of anatomical structures, pathological features, and 
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imaging modalities (Krishna et al., 2024). By generating synthetic images with corresponding annotations, 
DDPMs provide a controllable generative framework that facilitates this objective and enables broader 
applications of deep learning in medical imaging. 

2. Theoretical Basis and Development Status of Generative Models 
The core principle of Denoising Diffusion Probabilistic Models (DDPMs) originates from non-equilibrium 

thermodynamics. By defining a forward Markov chain that gradually transforms data into Gaussian noise, and 
learning a corresponding reverse process to reconstruct the original data from noise, DDPMs achieve their 
generative capability, as illustrated in Figures 1 and 2. 

Figure 1: Forward Diffusion 

 

Figure 2: Reverse Diffusion 

 
The forward diffusion process is computed as follows: 

  (1) 

  (2) 

The reverse diffusion process is computed as follows: 

  (3) 

Ho et al. first proposed Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020) and 
demonstrated their ability to generate high-quality images. They achieved remarkable generative performance 
by training a weighted variational lower bound designed based on a novel connection between denoising score 
matching and Langevin dynamics. Subsequently, DDPMs and their variants have achieved considerable 
success in the field of computer vision (Jiang et al., 2025). The development of diffusion models has proceeded 
through multiple stages, aiming to optimize generation quality, training efficiency, and inference speed. For 
instance, improved DDPMs learn the reverse process via simple reparameterization and hybrid learning 
objectives (Liu et al., 2023), while Variational Diffusion Models (VDMs) introduce learnable diffusion 
variances, Fourier features, and architectural innovations to capture finer details. Denoising Diffusion Implicit 
Models (DDIMs) (Liu et al., 2023) reduce the number of autoregressive steps to generate higher-quality 
samples, significantly improving sampling efficiency. Analytic-DPM (Bao et al., 2022) provides a training-
free inference framework that achieves substantial speedup while maintaining high-quality samples. Diffusion 
models continue to evolve in terms of maximum likelihood optimization, data generalization, and slice-based 
sampling, laying a solid foundation for their application in specialized domains such as medical image 
synthesis. 

DDPMs can generate high-quality synthetic medical images, effectively augment training datasets and 
enhance model performance in tasks such as classification and segmentation (Khazrak et al., 2024). In studies 
on pulmonary nodule segmentation, a memory-efficient block-wise DDPM (Khadra & Türkbey, 2024) was 
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proposed to generate CT scans containing pulmonary nodules, addressing memory constraints while improving 
the practicality of synthetic images. DDPMs can also generate medical images conditioned on specific 
attributes, such as pathological features, anatomical masks, or imaging modalities. For example, the seg2med 
framework (Yang et al., 2025) uses DDPMs to synthesize CT and MR images conditioned on anatomical 
masks, achieving high Structural Similarity Index (SSIM). Multi-conditional DDPMs (mDDPMs) (Krishna et 
al., 2024) provide a controllable generative framework for medical image synthesis, capable of generating 
annotated synthetic images to meet the demand for highly accurate, diverse, and sufficiently large annotated 
datasets in medical imaging applications. 

Li et al. (2025) proposed augmenting the backbone U-Net of diffusion models with Kolmogorov–Arnold 
Networks (KANs), enhancing the nonlinear modeling capacity of the network. Compared with the 
conventional U-Net used in diffusion models, Diffusion U-KAN more effectively captures and represents 
complex nonlinear features in medical images, exhibiting superior generative and generalization capabilities. 
On the other hand, Joshi A. et al. (2022, 2023) proposed the R2Net framework, introducing Lipschitz 
continuity constraints and multi-scale extensions to achieve efficient and flexible registration of multiple 
medical images, improving computational efficiency while preserving deformation properties. Although 
R2Net demonstrates fast inference, it shows limited preservation of fine-grained details in medical images, 
with partial loss of subtle information. 

To mitigate mode collapse, Conditional Generative Adversarial Networks (CGANs) (Mirza & Osindero, 
2014) were introduced, which incorporate conditional variables into the latent space of the generator to 
constrain the sample generation process, thereby partially alleviating mode collapse. Kim and Ye (2022) 
proposed a novel Diffusion Deformation Model (DDM), which combines DDPMs with deformation 
registration models to successfully generate four-dimensional (4D) temporal medical images. 

3. Mamba-Spatial-Temporal Generator Model 
The Mamba module is an efficient deep learning architecture specifically designed for spatiotemporal 

feature extraction, with the aim of enhancing a model’s representational capacity for complex, high-
dimensional data. It employs a multi-branch design to simultaneously process spatial and temporal information. 
Within each branch, attention mechanisms are seamlessly integrated with convolutional operations, enabling 
joint modeling of both local and global features. The module further decomposes input feature maps into 
multiple channel subsets, each subjected to learnable linear transformations and nonlinear activations, followed 
by a gating mechanism that dynamically fuses information across channels. This design not only strengthens 
the capture of spatiotemporal dependencies but also effectively alleviates feature redundancy and information 
loss in multi-frame sequence generation tasks. 

Denoising diffusion probabilistic models (DDPMs) have demonstrated remarkable performance in image 
generation, speech synthesis, and cross-modal generation tasks. Their core architecture is typically based on 
U-Net, leveraging convolutional neural networks (CNNs) for local feature extraction and multi-scale 
representation. However, CNNs are inherently limited in modeling long-range dependencies and capturing 
global contextual information. While Transformers can address these limitations, their quadratic computational 
complexity and training instability have constrained their broad adoption in diffusion-based generative models. 
To overcome these challenges, we propose a novel hybrid feature extraction module, the Mamba-Spatial-
Temporal Generator (MSTG), as illustrated in Figure 3. MSTG synergistically combines the local perceptual 
strengths of CNNs with the global modeling capabilities of state-space models, further enhanced by linear 
projections and convolutional operations. This hybrid design substantially improves the representational power 
and generative fidelity of DDPMs when modeling complex data distributions. 

Owing to its linear computational complexity, Mamba offers a computational efficiency advantage in long-
sequence processing. When combined with the lightweight convolutional design of CNNs, it leverages the 
CNN-driven selective state-space mechanism to enhance the understanding of global contextual information. 
The discrete formulation of the Mamba State Space Model is computed as follows: 

  (4) 

  (5) 
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By incorporating a selective mechanism (selective scan), Mamba combines convolutional kernels with 
dynamic parameterization to achieve linear computational complexity, computed as follows: 

  (6) 

Figure 3: MSTG Module 

 
Building upon convolutional feature extraction, this study introduces the Mamba module—a selective state-

space model—as a core innovation to further enhance the capacity of generative models in capturing 
spatiotemporal features of high-dimensional image data. The Mamba module systematically models sequential 
data via state-space equations, enabling global receptive field coverage while maintaining linear computational 
complexity, thereby effectively capturing long-range dependencies within images. Compared with 
conventional Transformer models, this design exhibits notable advantages in high-resolution image generation 
tasks, demonstrating improved training stability, memory efficiency, and computational scalability. Its linear-
complexity property is particularly suitable for processing large-scale image sequences, circumventing the 
exponential computational and memory overhead associated with Transformers as sequence length increases, 
and providing a viable solution for applications such as high-resolution medical and natural image synthesis. 

Within the Mamba-Spatial-Temporal Generator (MSTG), the Mamba module first serializes convolutional 
feature maps, converting two- or three-dimensional spatial representations into channel-wise temporal 
sequences. This formulation enables Mamba to model global dependencies between pixels, thereby 
compensating for the inherent limitations of convolutional neural networks (CNNs) in capturing long-range 
structural relationships. While convolutions excel at local feature extraction and texture representation, their 
receptive field is constrained by kernel size and network depth, limiting their capacity to capture semantic 
correlations across spatially distant regions. The state-space modeling strategy of Mamba integrates 
information across the entire feature sequence, achieving precise representation of global semantic structures 
and enhancing both the overall coherence and local detail consistency of generated images. 

To further optimize feature representation, a linear layer is applied to the output of the Mamba module for 
dimensional adjustment and information compression. This linear transformation reduces feature redundancy 
and strengthens the model’s ability to represent nonlinear relationships, ensuring that subsequent processing 
can more fully exploit global semantic information. The transformed features are then processed through 
convolutional layers to reconstruct and refine spatial structures. These convolutional operations operate over 
local receptive fields to ensure spatial consistency with the target distribution while preserving semantic 
integrity. Additionally, residual connections are introduced to fuse the global information from Mamba with 
the locally reconstructed details. This residual mechanism facilitates the construction of rich hierarchical 
features and mitigates potential detail loss during feature extraction, enabling a smooth transition from global 
semantics to local structures and improving the visual coherence and realism of the generated images. 

To enhance deep representation and multi-scale generation, the entire module is designed as a cascaded 
architecture composed of multiple stacked sub-modules. Each stage consists of three key components: CNN-
based local feature extraction, Mamba-driven global sequence modeling, and linear-convolution reconstruction 
with feature fusion. Through this multi-stage design, the model progressively accumulates and refines feature 
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representations, capturing low-level textures in shallow layers as well as high-level semantic information in 
deeper layers. Moreover, a cross-stage feature fusion mechanism, implemented via skip connections, integrates 
shallow detailed features with deep semantic features, further enhancing the transmission and utilization of 
multi-scale information. 

4. Experiments 

4.1 Datasets 
In this study, we utilized the multi-frame cardiac MRI dataset provided by the Automated Cardiac 

Diagnosis Challenge (ACDC). The dataset primarily comprises scans capturing the heart from end-diastole 
(ED) to end-systole (ES) and is divided into five categories: normal (NOR), dilated cardiomyopathy (DCM), 
right ventricular abnormality (ARV), myocardial infarction with systolic heart failure (MINF), and 
hypertrophic cardiomyopathy (HCM), encompassing a total of 100 subjects. For the experiments conducted in 
this work, the original cardiac images were resampled to a voxel spacing of 1.5 × 1.5 × 3.15 mm. 

4.2 Experimental Details 
In this experiment, the model input channel sizes were set to 8, 16, 32, and 32. The initial learning rate was 

set to 0.0001, and the training batch size was 1. Network weights were updated using stochastic gradient 
descent with the Adam optimizer. 

4.3 Experimental Analysis 
4.3.1 Quantitative Analysis 
Table 1: Comparison of quantitative results of various models in image reconstruction tasks 

Model NMSE↓ PSNR↑ SSIM↑ 
CGAN 0.316 20.047 0.565 
U-KAN 0.557 18.696 0.600 

R2 0.038 23.201 0.678 
Ours 0.078 29.23 0.8978 

In our experiments, R2 (Joshi & Hong, 2022, 2023), U-KAN (Li et al., 2025), and CGAN were employed 
as comparative models. The evaluation metrics included Normalized Mean Squared Error (NMSE), Peak 
Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM), assessing the generation quality from 
three perspectives: error level, signal-to-noise fidelity, and perceptual structural consistency. As shown in 
Table 1, our method significantly outperforms the comparative models across multiple metrics, particularly 
excelling in metrics sensitive to visual quality. Specifically, for NMSE, our method achieved an outstanding 
value of 0.078, markedly lower than those of CGAN and U-KAN, indicating minimal discrepancy between 
the generated outputs and the ground truth images. Regarding PSNR, our approach reached 29.23 dB, 
substantially higher than CGAN, U-KAN, and R2. This improvement in PSNR demonstrates the method’s 
superior ability to suppress generation noise while preserving high-frequency image details, thereby 
maintaining overall image signal-to-noise fidelity and producing outputs visually closer to real images. In 
terms of SSIM, our method attained a high score of 0.8978, significantly surpassing all comparative models. 
As an important metric that evaluates image structural, luminance, and contrast similarity, the high SSIM score 
indicates that our approach effectively preserves structural integrity, edge clarity, and local texture details, 
thereby better reconstructing the perceptual content of the images and meeting the practical requirements for 
high-quality image synthesis. 

A comprehensive analysis reveals that although R2 shows slightly better performance in NMSE, our 
method demonstrates overall superiority in image quality, particularly in perceptual quality. This indicates that 
the proposed generative model not only achieves high reconstruction accuracy at the pixel level but also 
maintains higher-level semantic and structural information, effectively balancing the generation quality of both 
low-frequency content and high-frequency details. 
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4.3.2 Qualitative Analysis 
As shown in Figure 4, in the task of continuous image generation, both the R2 and CGAN models exhibit 

varying degrees of deformation, compromising the structural integrity of the generated images. Additionally, 
these models display noticeable discontinuities in brightness distribution, resulting in overall lower image 
quality. This indicates that, although R2 and CGAN are capable of capturing certain local features, they are 
insufficient in maintaining global structural continuity and fine-grained detail consistency. The U-KAN model 
demonstrates relatively better performance in brightness continuity, preserving the gradient information of the 
original data with greater stability. However, the images it generates still deviate from the original data, 
particularly along edges, where blurring occurs, suggesting limitations in local structural refinement. While U-
KAN partially alleviates the issue of brightness discontinuity, its generated images remain inadequate in terms 
of structural and textural fidelity for high-precision generation tasks. 

In contrast, the method proposed in this study significantly outperforms the aforementioned models in both 
vertical brightness distribution and edge detail fidelity. Our approach more accurately reproduces the 
brightness variations of the original data, ensuring continuity without abrupt changes. Moreover, in edge and 
detail reconstruction, the generated images closely match the originals, with well-defined structural contours 
and richly preserved textural details. 

Figure 4: Different Slice Positions 

 
As illustrated in Fig. 5, all models exhibit edge diffusion during the horizontal sequential generation process, 

with noticeable deviations in brightness compared to the original images, resulting in substantial differences 
between the generated samples and the ground truth. While U-KAN produces images with trends similar to 
the original data, the differences in fine details remain pronounced. In contrast, the images generated by our 
method demonstrate superior horizontal brightness consistency and edge fidelity relative to all other models, 
closely approximating the distribution characteristics of the original data. 

Figure 5: Different Slice Positions Across Frames 
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5. Conclusion 
In this work, we designed a hybrid architecture that integrates Convolutional Neural Networks (CNNs) 

with State Space Models, aiming to effectively combine local feature extraction with global sequential 
modeling capabilities. Experimental results demonstrate that the proposed generative module not only achieves 
high generation accuracy at the pixel level but also exhibits strong competitiveness in preserving higher-level 
semantic and structural information, effectively balancing the generation quality of low-frequency content and 
high-frequency details. These characteristics render it particularly favorable in visual evaluations, enabling the 
generation of new samples with superior visual fidelity that closely resemble real images. Future work will 
further investigate the model’s generalization capability in complex scenarios and explore avenues for 
optimizing computational efficiency, with the goal of maximizing its potential in practical applications. 
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