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Abstract 

This review provides a comprehensive overview of recent advancements in the development of mechanical 
metamaterials through the synergistic integration of artificial intelligence (AI) and additive manufacturing 
(AM). By combining computational design strategies with high-precision fabrication techniques, researchers 
can rapidly identify optimized microstructures and translate them into functional prototypes. This approach 
accelerates the exploration of multifunctional and adaptive metamaterials, enabling properties that are difficult 
to achieve with conventional materials. This paper highlights key methodologies for AI-assisted design and 
AM-based fabrication, examines their capabilities and limitations, and outlines workflows that bridge 
theoretical modeling and practical implementation. Emerging trends, including self-adaptive metamaterials 
and application-specific architectures, are discussed to provide guidance for future research. Overall, this 
review emphasizes how AI and AM collectively transform the landscape of mechanical metamaterial design, 
offering pathways toward faster innovation, enhanced performance, and real-world applicability. 
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1. Introduction 

Mechanical metamaterials are artificially engineered structures with architected micro- and nanoscale 
geometries that endow them with unconventional mechanical behaviors unattainable in natural materials 
(Bertoldi et al., 2017). Unlike conventional materials, whose properties are primarily determined by their 
intrinsic chemical composition, the remarkable performance of mechanical metamaterials arises 
predominantly from their designed structural topology, hierarchical arrangement, and multiscale geometrical 
features. In recent years, mechanical metamaterials have emerged as research and application hotspots owing 
to their superior mechanical properties and functionalities, with transformative applications across diverse 
fields, including aerospace engineering and civil infrastructure (Jiao et al., 2023). 

With the rapid development of artificial intelligence and additive manufacturing technologies, the paradigm 
of metamaterial design and fabrication is undergoing a profound transformation. AI-driven computational 
models, such as deep learning, reinforcement learning, and generative design algorithms, enable accelerated 
inverse design, topology optimization, and the computational discovery of novel architectures. Complementing 
these advances, additive manufacturing technologies-including high-resolution 3D printing, multimaterial 
printing, and two-photon lithography-provide the precision, geometric freedom, and scalability necessary to 
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physically realize these intricate designs. As shown in Figure 1, the synergy between artificial intelligence and 
additive manufacturing not only bridges the gap between theoretical design and practical implementation but 
also accelerates the development of next-generation mechanical metamaterials with tailored, multifunctional, 
and adaptive properties. 

This paper reviews the recent advances in AI-enabled design and additive manufacturing of mechanical 
metamaterials, discusses their synergistic integration, analyzes current challenges, and outlines future research 
directions. 

Figure 1: Schematic illustration of the AI–AM–mechanical metamaterial pipeline. 

 

2. Body of Paper 

2.1 AI-Enabled Design of Mechanical Materials 

The design of mechanical metamaterials is inherently complex, as their extraordinary properties emerge 
not from their chemical composition but from carefully engineered geometrical arrangements across multiple 
scales. Conventional trial-and-error or purely physics-based optimization approaches often face challenges of 
high computational cost, limited design space exploration, and lack adaptability to evolving functional 
requirements. Artificial intelligence (AI) provides a paradigm shift by enabling data-driven, predictive, and 
generative approaches that significantly accelerate and enrich the design workflow. 

2.1.1 Machine Learning for Property Prediction 

Machine learning (ML) algorithms have been increasingly applied to establish predictive models that map 
structural descriptors of metamaterials to their effective mechanical properties. Supervised learning 
techniques-such as regression-based models, random forests, and support vector machines-enable fast 
evaluation of elastic moduli, Poisson’s ratios, and energy absorption capacities on the basis of training datasets 
generated from finite element simulations or experimental measurements (Zhang and Zhao, 2024). This 
predictive capability allows researchers to screen vast design spaces efficiently, thereby reducing the reliance 
on exhaustive simulations. Moreover, transfer learning has emerged as a powerful tool for adapting models 
trained on one class of metamaterials to related but structurally distinct classes, further enhancing the efficiency 
of predictive modeling. 

2.1.2 Deep Learning and Inverse Design 

Deep learning (DL) architectures, particularly convolutional neural networks (CNNs) and graph neural 
networks (GNNs), have been employed for the inverse design of metamaterials. Unlike forward prediction 
models, inverse design focuses on determining the optimal microstructure that yields a target set of properties. 
Variational autoencoders (VAEs) and generative adversarial networks (GANs) provide the capacity to 
automatically generate novel microstructures beyond human intuition, enabling the discovery of 
unconventional yet functional architectures (Zhang and Zhao, 2024). Reinforcement learning (RL) further 
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extends this paradigm by framing the design process as a sequential decision-making problem, in which an AI 
agent iteratively improves the geometry on the basis of feedback from simulated or experimental performance 
metrics. 

2.1.3 Multiobjective and Topology Optimization 

Mechanical metamaterial design often requires balancing multiple objectives, such as maximizing stiffness 
while minimizing weight or optimizing both strength and energy absorption. Traditional topology optimization 
methods, while powerful, are computationally intensive for complex geometries. AI-driven surrogate models 
and hybrid approaches combine the rigor of physics-based methods with the efficiency of machine learning to 
achieve real-time multiobjective optimization. These methods significantly expand the design space and 
facilitate the creation of hierarchical and multifunctional architectures that would be infeasible to obtain 
through conventional optimization alone. 

2.1.4 Integration of AI with Physics-Informed Models 

While purely data-driven methods offer speed and adaptability, they may lack interpretability and 
generalizability outside the training domain. Recent advances emphasize the integration of AI with physics-
informed neural networks (PINNs) and reduced-order modeling techniques, which embed governing physical 
laws into the learning process. This hybrid paradigm ensures that AI-generated designs remain physically 
feasible, robust under varying boundary conditions, and better aligned with practical manufacturing constraints. 

2.2 Additive Manufacturing Techniques for Metamaterials 

Additive manufacturing (AM) has emerged as a critical enabling technology for the physical realization of 
mechanical metamaterials, offering unprecedented geometric freedom, multimaterial integration, and high 
spatial resolution. Unlike traditional subtractive manufacturing methods, AM builds structures layer by layer, 
allowing the fabrication of intricate lattice networks, hierarchical architectures, and functional gradients that 
are essential for achieving the desired mechanical properties. This section reviews key AM technologies and 
their applications in metamaterial fabrication. 

2.2.1 High-resolution 3D printing 

High-resolution 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), 
and two-photon polymerization (2PP) (Hussain, 2024), enable the fabrication of micro- and nanoscale 
metamaterial features with submicron precision. SLA and DLP utilize photopolymerization of liquid resins to 
create complex lattices rapidly, whereas 2PP offers unparalleled resolution and is capable of producing 
nanostructured architectures that are otherwise unattainable with conventional methods. These technologies 
are particularly suitable for producing lightweight, high-strength metamaterials with controlled deformation 
mechanisms and tunable mechanical responses. 

2.2.2 Multimaterial and Functionally Graded Printing 

The integration of multiple materials within a single building allows the creation of metamaterials with 
spatially varying mechanical, thermal, or electrical properties. Multiple-material AM techniques, such as 
PolyJet printing and inkjet-based material jetting, facilitate the combination of soft and stiff phases, enabling 
the realization of functionally graded structures that mimic natural hierarchical systems. This capability is 
crucial for designing metamaterials that exhibit programmable stiffness, shape-morphing behavior, or energy 
absorption tailored to specific applications. 

2.2.3 Metal and Ceramic Additive Manufacturing 

For applications demanding high strength, wear resistance, or thermal stability, metal and ceramic AM 
processes, such as selective laser melting (SLM), electron beam melting (EBM), and binder jetting 
(Bandyopadhyay et al., 2023), are increasingly employed. These methods allow the fabrication of load-bearing 
metamaterials with complex lattices and internal voids that are suitable for aerospace, automotive, and civil 
engineering applications. Postprocessing techniques, including heat treatment and hot isostatic pressing, 
further enhance the mechanical performance and surface quality, ensuring the functional reliability of the 
printed metamaterials. 
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2.2.4 Process–Property Integration and Design for Manufacturability 

A critical aspect of AM for metamaterials is the tight coupling between process parameters and the resulting 
material properties. Factors such as layer thickness, laser power, scan speed, and material viscosity directly 
influence feature resolution, internal porosity, and mechanical performance. Design-for-manufacturability 
(DFM) strategies are therefore essential, enabling designers to anticipate and mitigate fabrication defects while 
maintaining fidelity to the intended microarchitecture. Coupling AI-enabled design with AM process 
optimization facilitates the production of metamaterials that efficiently meet both structural and functional 
requirements. 

2.2.5 Emerging Trends in Additive Manufacturing for Metamaterials 

Recent advancements in AM are pushing the boundaries of metamaterial fabrication toward adaptive, 
multifunctional, and self-healing systems. Innovations such as in situ monitoring, real-time feedback control, 
and hybrid additive-subtractive processes enhance precision, reproducibility, and scalability. Furthermore, 
combining AM with postprocessing techniques such as chemical infiltration, surface coating, or material 
doping expands the range of achievable mechanical and functional properties. These developments pave the 
way for application-specific metamaterials that can respond dynamically to environmental stimuli or load 
conditions. 

2.3 Integration of AI and Additive Manufacturing for Mechanical Metamaterials 

The convergence of artificial intelligence and additive manufacturing represents a transformative paradigm 
in mechanical metamaterial research. By linking computational design, predictive modeling, and high-fidelity 
fabrication, this integrated approach enables the rapid realization of complex, multifunctional, and application-
specific architectures that would be infeasible with traditional methods alone. 

2.3.1 Digital Twin Frameworks 

Digital twin technology enables real-time simulation of manufacturing processes in a virtual environment. 
By integrating artificial intelligence (AI), it can predict process parameters, monitor the manufacturing process, 
and use real-time feedback data from additive manufacturing to update the model and correct any deviations, 
thus improving the efficiency of design and manufacturing collaboration and achieving closed-loop control for 
enhanced process stability. For example, Liu et al. (2024) proposed a closed-loop digital twin control 
framework for laser powder bed fusion (L-PBF) processes based on deep neural networks (Liu et al., 2024). 

In the digital manufacturing ecosystem, AI and additive manufacturing (AM) technologies play crucial 
roles through integration with digital twin (DT) technology. 

2.3.2 Closed-Loop AI–AM Design Workflow 

A closed-loop AI–AM workflow integrates machine learning models with in situ process monitoring and 
postfabrication characterization. AI predicts the impact of geometric variations and process parameters on 
mechanical performance, whereas AM systems provide immediate feedback on printing fidelity and structural 
integrity. Reinforcement learning frameworks can exploit this feedback to iteratively refine microstructures, 
optimizing for multiobjective criteria such as the stiffness‒to‒weight ratio, energy absorption, and fatigue 
resistance. Such workflows substantially reduce design cycles and enable the production of robust, application-
specific metamaterials. 

2.3.3 Multiscale Optimization and Hierarchical Design 

The integration of AI and AM facilitates multiscale optimization, allowing metamaterials to be engineered 
across the nanoscale, microscale, and macroscale scales simultaneously. Hierarchical architectures, with 
tailored unit cells, gradient structures, and functional interfaces, can be computationally generated via 
generative models and realized via high-precision AM techniques. This approach enables the concurrent tuning 
of global mechanical behavior and local functional responses, resulting in metamaterials with unprecedented 
combinations of stiffness, strength, energy absorption, and adaptability. 
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2.3.4 AI-Guided Material Selection and Process Parameterization 

In addition to structural design, AI can assist in selecting suitable materials and optimizing AM process 
parameters to achieve the desired metamaterial performance. By leveraging predictive models trained on 
experimental and simulation datasets, AI can recommend material compositions, printing strategies, and 
postprocessing steps that maximize mechanical efficiency while minimizing defects. This synergistic approach 
ensures that both the architecture and the fabrication process are cooptimized, reducing manufacturing costs 
and improving the reliability of the final product. 

2.3.5 Challenges and Opportunities in AI–AM Integration 

Despite its potential, the full integration of AI and AM for mechanical metamaterials faces several 
challenges. These include limited high-quality datasets for training AI models, computational costs associated 
with multiobjective optimization, and scaling constraints in AM for large or complex structures. Addressing 
these issues requires advances in physics-informed machine learning, high-throughput experimental 
characterization, and hybrid fabrication techniques. Nonetheless, the continued convergence of AI and AM 
holds enormous promise for enabling next-generation metamaterials with tailored, adaptive, and 
multifunctional properties suitable for aerospace, biomedical, civil, and energy applications. 

2.4 Future Directions and Perspectives 

The intersection of artificial intelligence and additive manufacturing has unlocked unprecedented 
opportunities in the design and fabrication of mechanical metamaterials. Looking forward, several research 
directions and emerging trends are expected to shape the field over the next decade. 

2.4.1 Self-Adaptive and Stimuli-Responsive Materials 

Future mechanical metamaterials are expected to exhibit self-adaptive or stimuli-responsive behavior, 
enabling real-time adjustment of mechanical properties in response to external stimuli such as load, 
temperature, or magnetic fields. AI-guided design can predict optimal microstructural configurations for 
adaptive functionality, whereas advanced AM techniques allow the fabrication of responsive unit cells with 
integrated actuation mechanisms. These metamaterials hold promise for applications in soft robotics, wearable 
devices, and impact mitigation systems. 

2.4.2 Multifunctional and Multiphysics Integration 

The next generation of metamaterials will increasingly integrate multiple functionalities, such as combined 
mechanical, thermal, acoustic, and electrical properties. AI-driven multiphysics modeling and optimization 
can guide the design of metamaterials that simultaneously satisfy diverse performance criteria, whereas AM 
enables the precise placement of heterogeneous materials and gradients at multiple scales. These 
multifunctional metamaterials could revolutionize aerospace components, energy harvesters, and biomedical 
implants. 

2.4.3 High-Throughput Autonomous Design-to-Fabrication Platforms 

To accelerate innovation, future workflows are likely to adopt high-throughput and autonomous platforms 
that integrate AI, AM, and real-time characterization. Automated design–fabrication–testing loops can rapidly 
explore vast design spaces, identify optimal architectures, and validate performance with minimal human 
intervention. Such platforms will dramatically reduce development timelines and enable large-scale 
deployment of metamaterials in industrial applications. 

2.4.4 Data-Driven Materials Discovery and Sustainability 

The combination of AI and AM offers transformative opportunities for data-driven mechanical material 
discovery, enabling the design of novel material compositions and microarchitectures guided by performance-
driven objectives. AI-based generative models, surrogate predictors, and active learning platforms facilitate 
the rapid exploration of both structural and compositional design spaces to identify candidates optimized for 
mechanical, thermal, and multifunctional performance. Alongside this capability, sustainability 
considerations-such as recyclability, energy-efficient fabrication strategies, and lifecycle CO₂ emissions-are 
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becoming integral to metamaterial development workflows. Recent work has demonstrated how machine 
learning models trained on experimental process data coupled with process parameter optimization can 
accurately forecast and minimize CO₂ emissions during AM operations, particularly through fine-tuning of the 
infill density, layer thickness, and temperature settings (Hauck et al., 2025). By integrating these sustainability-
aware AI tools with AM fabrication, researchers can cooptimize the design, performance, and environmental 
impact of next-generation mechanical metamaterials 

3. Conclusion 

3.1 Research Summary 

This review has examined the synergistic integration of artificial intelligence (AI) and additive 
manufacturing (AM) in the field of mechanical metamaterials. AI facilitates predictive modeling, inverse 
design, and multiobjective optimization, thereby enabling the exploration of broader design spaces; AM 
provides reliable technological support for the precise fabrication of complex micro- and nanoarchitectures. 
Their integration establishes a closed-loop design–fabrication paradigm that drives the rapid development of 
next-generation metamaterials with customizable, multifunctional, and adaptive properties. The novelty of this 
study lies in highlighting the potential of AI–AM integration and its profound impact on the future landscape 
of metamaterial research. 

3.2 Limitations and Challenges 

Despite the significant progress achieved, several limitations remain: 

AI algorithms require improvements in interpretability and generalization across tasks; 

High-resolution AM still faces challenges in terms of material compatibility, manufacturing efficiency, and 
cost control; 

The design–fabrication–validation loop has not yet been fully established, and feedback mechanisms 
require further development. 

3.3 Future Outlook 

Future research may be further advanced in the following directions: 

Algorithm Advancement: Development of explainable and robust AI models capable of handling 
multiphysics coupling problems; 

Manufacturing breakthroughs: advancements in multimaterial and hybrid AM technologies to increase 
fabrication precision and functional diversity; 

Intelligent closed-loop systems: Establishment of real-time, data-driven design–fabrication–testing 
platforms with feedback optimization; 

Application expansion: Scaling up the practical deployment of metamaterials across the aerospace, civil 
engineering, biomedical, and energy sectors. 

Through continuous interdisciplinary integration and technological innovation, the deep synergy between 
AI and AM is expected to accelerate the transition of mechanical metamaterials from laboratory research to 
practical engineering applications, ultimately demonstrating their value in a wide range of industrial and 
societal contexts. 
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