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Abstract

Objective: This study aims to systematically compare the performance of multiple machine learning models
in diabetes risk prediction and identify key risk factors, thereby providing data-driven decision support for
early diabetes screening. Methods: Using the UCI Pima Indians Diabetes dataset, five models-logistic
regression, K-nearest neighbors, support vector machine, decision tree, and random forest-were trained and
evaluated. Model performance was comprehensively assessed via metrics including AUC-ROC, precision, and
recall, with feature importance analysis employed to elucidate core diabetes risk factors. Results: The random
forest model demonstrated superior performance across multiple metrics (AUC = 0.8167). Plasma glucose was
consistently identified as the strongest predictor, with body mass index (BMI) and age also emerging as
significant contributors. Conclusion: The random forest model exhibits robust performance and effective
capture of feature interactions, making it well-suited for early diabetes prediction with considerable potential
for clinical application.
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1. Introduction

1.1 Diabetes Background

Diabetes, a chronic metabolic disorder affecting populations worldwide, impacted 537 million adults in
2021 according to the International Diabetes Federation (IDF), with projections indicating a rise to 783 million
by 2045 [1]. Its complications include cardiovascular disease, retinopathy, and other conditions. Early
prediction can reduce healthcare costs by more than 30% (WHO, 2022) [2].

1.2 Limitations of Traditional Prediction Methods

Current clinical standards, such as the oral glucose tolerance test (OGTT) and HbA 1c measurement, have
notable drawbacks: invasive procedures result in low patient adherence [3]; traditional risk assessment tools
(e.g., the FINDRISC questionnaire) achieve accuracy rates of only 65—70% [4]; and these approaches fail to
account for nonlinear feature interactions (e.g., the synergistic effect between BMI and blood pressure).
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1.3 Application Potential of Machine Learning

Supervised learning algorithms have demonstrated substantial potential in medical prediction tasks, with
advantages in three key areas: effective handling of high-dimensional clinical data (e.g., the eight
heterogeneous features in the Pima dataset), capability to capture complex nonlinear relationships and feature
interactions (visualizable through advanced interpretability methods such as SHAP), and superior predictive
performance in comparable studies-for instance, the XGBoost model achieved an AUC of 0.89 in Alghamdi
et al. (2022), underscoring the practical value of machine learning in diabetes risk prediction.

2. Dataset Description

2.1 Data Source

The Pima Indians Diabetes Database from the UCI Machine Learning Repository was utilized [5]. The data
were collected from Pima Indian heritage women aged 21 years and older in the Phoenix area of Arizona,
United States. This population exhibits a type 2 diabetes incidence rate exceeding the global average by more
than 50% (NIH, 2019).

2.2 Samples and Features

The dataset [6] includes 768 samples, comprising 268 individuals with diabetes (positive class, 34.9%) and
500 without (negative class). The diabetes prediction models were constructed using eight clinical features:
number of pregnancies (Pregnancies, reflecting hormone-related risk in females), plasma glucose
concentration during an oral glucose tolerance test (Glucose), diastolic blood pressure (BloodPressure), triceps
skinfold thickness (SkinThickness, indicative of body fat percentage), 2-hour serum insulin level (Insulin),
body mass index (BMI), diabetes pedigree function (DiabetesPedigreeFunction, quantifying familial genetic
risk), and age (Age). The target variable, Outcome, is binary and labeled according to WHO diagnostic criteria
(fasting plasma glucose = 7.0 mmol/L or 2-hour OGTT glucose = 11.1 mmol/L), with 1 denoting "diagnosed
with diabetes within 5 years" and 0 denoting "no diagnosis."

2.3  Key Feature Distribution Description

Statistical analysis of the Pima Indians Diabetes dataset reveals substantial heterogeneity in demographic,
physiological, and metabolic characteristics. Demographically, the number of pregnancies exhibits a right-
skewed distribution (skewness = 0.90), with 75% of individuals reporting six or fewer pregnancies. Age
displays a distinctive bimodal distribution, with a primary peak in the 24-29-year reproductive age group and
a secondary peak in the 41-45-year high-risk segment. Among key physiological indicators, plasma glucose
concentration is markedly higher in the positive group (mean = 141.26 mg/dL) than in the negative group
(mean = 109.98 mg/dL), with Kolmogorov—Smirnov test confirming significant differences in distribution (D
= 0.46, p < le-16). BMI analysis indicates a significantly higher obesity prevalence in the positive group
(62.3%) compared to the negative group (38.7%) (3> = 34.21, p = 4.5¢-9). Metabolically, insulin levels are
exponentially distributed (skewness = 2.51), with the majority of samples (68.2%) below 100 pU/mL. Skin
thickness is strongly correlated with BMI (r = 0.54). Notably, blood pressure (24.3%) and skin thickness
(29.1%) contain substantial proportions of zero values. These feature patterns provide critical data foundations
and quality considerations for subsequent machine learning modeling.

Table 1: Feature Correlation Analysis

Feature Pair Correlation Coefficient Clinical Significance

Age — Pregnancies 0.54 Reflects cumulative reproductive effect
Glucose — Outcome 0.47 Core diagnostic indicator
SkinThickness — BMI 0.54 Markers of body fat percentage

Insulin — SkinThickness 0.44 Indicator of insulin resistance
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Table 2: Descriptive Statistics of Features in the Diabetes Dataset

Feature Mean + SD Minimum | 25th Percentile |Median |75th Percentile | Maximum
Pregnancies 3.85+3.37 0 1 3 6 17
Glucose 120.89 +31.97 |0 99 117 140.25 199
BloodPressure 69.11 £19.36 |0 62 72 80 122
SkinThickness 20.54+ 1595 |0 0 23 32 99

Insulin 79.80+115.24 |0 0 30.5 127.25 846

BMI 31.99+7.88 0 27.3 32 36.6 67.1
DiabetesPedigreeFunction | 0.47 +0.33 0.078 0.244 0.372  10.626 242

Age 3324+ 11.76 |21 24 29 41 81

The feature distribution analysis of the Pima Indians Diabetes dataset (Figure 1) shows distinct
distributional characteristics and clinical implications across the eight key features. Pregnancies, insulin levels,
and DiabetesPedigreeFunction exhibit pronounced right-skewed distributions, indicating that most samples
cluster at lower values with a minority of high-value outliers. Glucose concentration approximates a normal
distribution with a peak in the 100-125 mg/dL range-close to the prediabetes diagnostic threshold-thus
carrying significant clinical warning value. Blood pressure and BMI display relatively uniform distributions,
reflecting the continuous nature of these physiological parameters in the population. Age is predominantly
distributed between 20 and 40 years with a right-skewed pattern, consistent with the study’s focus on women
aged 21 and older. Notably, skin thickness shows a high concentration of values in the 0—40 mm range with
many zero entries, providing clear guidance for subsequent data cleaning and outlier handling. These
distributional patterns not only highlight the unique characteristics of the study population but also inform
critical decisions in feature engineering and model selection: right-skewed features may require transformation,
zero values necessitate appropriate imputation strategies, and near-normally distributed features are well-suited
for direct inclusion in linear modeling frameworks.

Figure 1: Histograms of Feature Distributions
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Figure 2: Bar Chart of the Binary Distribution of the Target Variable
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Figure 3: Boxplots of Features Stratified by Target Variable
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(Illustrating Distributional Differences Across Groups)

The figures presents boxplots illustrating the distributional differences in the eight key features of the
diabetes dataset-Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, Diabetes Pedigree
Function, and Age-between the non-diabetic (Outcome = 0) and diabetic (Outcome = 1) groups. The results
show that Glucose exhibits the most pronounced association with diabetes, with a markedly higher median and
overall level in the diabetic group than in the non-diabetic group. Additionally, features such as BMI, Age,
and Pregnancies generally display higher medians or broader ranges in the diabetic cohort. Although Insulin
shows distributional differences between groups, its variability is relatively high. These inter-group differences
visually highlight the associations between physiological indicators and diabetic status, providing a data-driven
basis for constructing subsequent diabetes prediction models.
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Figure 4: Correlation Heatmap
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Figure 4 displays the correlation heatmap for the diabetes dataset, where the intensity of color and numerical
annotations represent the Pearson correlation coefficients between each feature (Pregnancies, Glucose,
BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age) and the target variable
(Outcome: presence or absence of diabetes). The results reveal that Glucose exhibits the strongest correlation
with Outcome (r = 0.47), followed by BMI (r = 0.29) and Age (r = 0.24), all showing positive associations.
Significant inter-feature correlations include Insulin with SkinThickness (r = 0.44), BMI with SkinThickness
(r = 0.39), and Age with Pregnancies (r = 0.54), reflecting the intrinsic physiological relationships between
features. Overall, most features demonstrate low-to-moderate positive correlations with Outcome, providing a
correlation-based foundation for subsequent feature selection and model development in diabetes prediction.

3. Data Preprocessing

3.1 Missing Value Handling

Missing values in the dataset are encoded as “0,” predominantly within physiological features. Statistical
analysis identified the following features as containing implausible zero values (inconsistent with medical
knowledge, as physiological measures such as glucose and blood pressure cannot be zero): Glucose,
BloodPressure, SkinThickness, Insulin, and BMI. Identification Method: Each of the aforementioned feature
columns was scanned to count the occurrences of zero values (results summarized in Table 3).

Table 3: Summary of Implausible Zero Values in Features

Feature Number of Zero Values
Glucose 5

BloodPressure 35

SkinThickness 227

Insulin 374

BMI 11
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Imputation Strategy: All zero values in the aforementioned features were uniformly replaced with NaN
(Not a Number) to explicitly designate them as missing, thereby preventing their misinterpretation as valid
physiological measurements during modeling.

Missing Value Imputation Strategy and Implementation Method: Median imputation using Simplelmputer
(strategy="median'). Rationale: The median is robust to outliers, which makes it suitable for physiological
variables with extreme values (e.g., Insulin exhibits strong right-skewness, where the mean is heavily
influenced by outliers); it preserves central tendency, is computationally efficient, and is well-suited for
medium-sized datasets; it aligns with standard preprocessing practices in medical data analysis and avoids
sample loss due to missingness. Procedure: The imputer was fitted exclusively on the training set (imputer. fit
(X _train [physiological features])) to prevent information leakage from the test set. Imputation was applied
separately to both training and test sets (imputer.transform(X_train) and imputer.transform(X_test)), ensuring
distributional consistency.

3.2 Dataset Splitting

Splitting Method Stratified sampling was employed (implemented via train_test split with default
stratification) to divide the dataset into training and test sets. Parameters:

Test set proportion: test size=0.2 (80% training, 20% testing) ; Random seed: random_state=42 for
reproducibility, Rationale: An 80:20 split balances training effectiveness and testing reliability in a small
dataset (n = 768); a fixed random seed ensures experimental reproducibility, aiding model tuning and
comparison; stratified sampling preserves the proportional distribution of the target variable (Outcome) across
both subsets, reducing sampling bias.

3.3  Feature Scaling

Scaling Method: Standardization (StandardScaler) was used to transform features into a distribution with a
mean of 0 and a standard deviation of 1, using the formula:
x-

(xscaled: 7# ) (1 )

where (u) is the feature mean and (o) is the feature standard deviation.

Rationale: Standardization is well-suited for approximately normally distributed features (e.g., Glucose,
BMI), enhancing convergence speed and accuracy in linear models (e.g., logistic regression, SVM); it
preserves the shape of the feature distribution and outlier information, consistent with the variability of
physiological indicators; and it ensures compatibility with distance-based models (e.g., KNN) by preventing
features with disparate scales (e.g., Age ranging from 0—100 vs. DiabetesPedigreeFunction ranging from 0—
2.42) from dominating model decisions.

Procedure: The scaler was fitted exclusively on the training set (scaler.fit(X_train)) to compute the mean((x))
and standard deviation((s))from training data only. The training set mean ((z))and standard deviation ((o))were
used to scale both the training and test sets (scaler.transform(X_train) and scaler.transform(X_test)). Key
Principle: The test set must not be used to fit the scaler to prevent data leakage, as it represents “unseen” data,
and its distribution must not influence the training process.

4. Model Selection Rationale

4.1  Logistic Regression Model
4.1.1 Confusion Matrix Results

The confusion matrix for the logistic regression model shows that, among samples with a true label of non-
diabetes, the model correctly predicted non-diabetes in 124 cases and incorrectly predicted diabetes in 27 cases.
Among samples with a true label of diabetes, the model incorrectly predicted non-diabetes in 33 cases and
correctly predicted diabetes in 47 cases.
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Figure 5: Confusion Matrix and ROC Curve for Logistic Regression
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4.1.2 Performance Interpretation

The ROC curve for the logistic regression model lies well above the random-guessing baseline, with an
AUC of 0.7975. The curve rises steeply at low false positive rates, indicating strong discriminatory power,
particularly for non-diabetic samples (evidenced by the high number of correct non-diabetes predictions).
However, the curve flattens in later segments, and the classification report reveals lower precision and recall
for the diabetic class. This suggests frequent misclassification of diabetic cases, likely due to weak linear
separability between diabetic and non-diabetic feature patterns or the model’s inability to capture complex
nonlinear interactions among predictors.

4.2 K-Nearest Neighbors (KNN, k=5) Model
4.2.1 Confusion Matrix Results

The confusion matrix for the KNN (4=5) model shows that, among true non-diabetic samples, 116 were
correctly predicted as non-diabetic and 35 were misclassified as diabetic. Among true diabetic samples, 30
were misclassified as non-diabetic and 50 were correctly predicted as diabetic.

Figure 6: Confusion Matrix and ROC Curve for KNN
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4.2.2 Performance Interpretation

The KNN model correctly identified a greater number of diabetic cases compared to logistic regression,
highlighting the strength of KNN in leveraging local sample similarity to capture diabetes-specific patterns.
However, the increased misclassification of non-diabetic samples suggests that KNN may struggle to define
precise local boundaries for the non-diabetic class, rendering it susceptible to influence from nearby outlier or
atypical samples.
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4.3
4.3.1 Confusion Matrix Results

Support Vector Classifier (SVC, Linear Kernel) Model

The confusion matrix for the SVC (linear kernel) model shows that, among true non-diabetic samples, 124
were correctly predicted as non-diabetic and 27 were incorrectly predicted as diabetic. Among true diabetic
samples, 34 were incorrectly predicted as non-diabetic and 46 were correctly predicted as diabetic.

Figure 7: Confusion Matrix and ROC Curve for SVC
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4.3.2 Performance Interpretation

The ROC curve for the SVC (linear kernel) model lies substantially above the random-guessing baseline,
achieving an AUC of 0.7897. It demonstrates strong performance in correctly identifying non-diabetic samples,
comparable to logistic regression, due to the linear kernel’s ability to effectively determine a separating
hyperplane in linearly separable regions. However, the number of misclassified diabetic samples remains
similar to that of logistic regression, indicating that the linear kernel fails to adequately capture potential
nonlinear relationships within diabetic feature patterns, thereby limiting its discriminatory power for the
positive class.

4.4
4.4.1 Confusion Matrix Results

Decision Tree Model

The confusion matrix for the decision tree model shows that, among true non-diabetic samples, 128 were
correctly predicted as non-diabetic and 23 were incorrectly predicted as diabetic. Among true diabetic samples,
38 were incorrectly predicted as non-diabetic and 42 were correctly predicted as diabetic.

Figure 8: Confusion Matrix and ROC Curve for Decision Tree
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4.4.2 Performance Interpretation

The ROC curve of the decision tree model lies above the random-guessing baseline with an AUC of 0.7222,
and it correctly identifies a substantial number of non-diabetic samples. This performance stems from the tree’s
hierarchical splitting on key features such as Glucose and BMI, effectively isolating clear non-diabetic patterns.
However, misclassifications remain frequent in the diabetic class, indicating that a single decision tree has
limited capacity to model complex, nonlinear interactions among multiple features in diabetic cases.
Additionally, its sensitivity to local data fluctuations contributes to reduced accuracy and a notable risk of false
negatives (missed diagnoses) in diabetes detection.

4.5 Random Forest Model
4.5.1 Confusion Matrix Results

The confusion matrix for the random forest model shows that, among true non-diabetic samples, 123 were
correctly predicted as non-diabetic and 28 were incorrectly predicted as diabetic. Among true diabetic samples,
30 were incorrectly predicted as non-diabetic and 50 were correctly predicted as diabetic.

Figure 9: Confusion Matrix and ROC Curve for Random Forest
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4.5.2 Performance Interpretation

The random forest model correctly identifies a large proportion of non-diabetic samples, owing to its
ensemble of multiple decision trees combined with random feature selection and bootstrap sampling. This
approach mitigates overfitting risks associated with individual trees while capturing robust, multidimensional
patterns characteristic of non-diabetic cases, enabling accurate classification of most negative samples. In
diabetic sample identification, misclassifications are notably reduced compared to a single decision tree,
demonstrating that ensemble learning enhances the modeling of complex, nonlinear feature interactions in
diabetic cases, thereby improving positive-class precision. Nevertheless, a residual proportion of misjudgments
persists, reflecting the inherent complexity of diabetes-related features or the incomplete capture of subtle
combinatorial effects among weaker predictors, resulting in occasional false negatives (missed diagnoses).

5. Model Comparison

5.1 Comprehensive Performance Comparison

To evaluate the performance of different machine learning algorithms in diabetes prediction, this study
compared five models: Logistic Regression, K-Nearest Neighbors (KNN), Support Vector Classifier (SVC),
Decision Tree, and Random Forest.Table 1 presents detailed performance metrics on the test set, including
Accuracy, Precision, Recall, F1-Score, AUC-ROC, and AUPR.
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Table 4: Comprehensive Performance Comparison of Models

Model Hyperparameters (Key Settings) Accuracy | Precision (Positive Class)
Logistic Regression | Regularization strength C=1.0, solver="1bfgs' 0.74 0.79
KNN K=5, distance metric=Euclidean 0.71 0.79
SvC Kernel=linear, C=1.0 0.74 0.79
Decision Tree Max depth=5, min samples split=10 0.74 0.77
Random Forest Number of trees=100, max depth=7 0.75 0.81
0.82 0.81 0.7976 0.6615
0.74 0.77 0.7371 0.5295
0.82 0.81 0.7986 0.6519
0.85 0.81 0.7722 0.5710
0.81 0.81 0.8167 0.6986

Overall performance ranking indicates that the random forest model achieved the best results, leading
across most key metrics with the highest accuracy (0.75), precision (0.81), AUC-ROC (0.8167), and AUPR
(0.6986). The logistic regression and linear-kernel SVC models exhibited highly similar performance, tying
for second place in accuracy and F1-score. The decision tree model had the highest recall (0.85) but relatively
lower precision (0.77). The KNN model underperformed overall, posting the lowest values across multiple
metrics, with notably inferior AUC-ROC (0.7371) and AUPR (0.5295).

5.2 Trade-off Between Precision and Recall

The experimental results clearly illustrate the trade-off between precision and recall across models, a critical
consideration in medical diagnostics.

The decision tree exhibits high recall but low precision, indicating a tendency to flag as many potential
patients as possible (high sensitivity) at the cost of increased false positives (misclassifying healthy
individuals). This behavior suits “rule-out” screening scenarios where missing a case is unacceptable and
follow-up testing is low-cost, though it risks inefficient use of downstream medical resources.

In contrast, the KNN model adopts a more conservative stance: its higher precision (0.79) implies greater
confidence when predicting diabetes, but its lower recall (0.74) reflects a higher rate of missed diagnoses (false
negatives).

An ideal model balances both objectives. In this study, the random forest achieves the optimal compromise,
with precision and recall both at 0.81, maximizing the F1-score. This balance enables effective detection of
true positives while maintaining high prediction reliability.

5.3 Preliminary Analysis of Performance Disparities
The observed performance differences stem from the intrinsic mechanisms of each algorithm:

Random Forest Superiority: Its top performance likely arises from the ensemble learning framework. By
aggregating predictions from multiple decision trees with randomized feature selection and bootstrap sampling,
random forest reduces variance and overfitting inherent in single trees while preserving strong nonlinear
modeling capability, resulting in superior generalization and robustness.

Decision Tree High Recall: Through recursive feature-space partitioning, the decision tree may develop
overly complex structures sensitive to the minority (diabetic) class, yielding high recall but at the expense of
precision due to overgeneralization.

KNN Limitations: Despite feature standardization, KNN’s poor performance may be attributed to: (1) the
curse of dimensionality, which degrades distance metrics in high-dimensional spaces; and (2) sensitivity to the
choice of K, where a fixed K=5 may not be optimal for this dataset.
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Similarity Between Logistic Regression and SVC: Their near-identical performance is expected, as a linear-
kernel SVC solves an optimization problem mathematically equivalent to that of regularized logistic regression,
producing comparable decision boundaries.

In summary, the random forest model demonstrates clear superiority in this diabetes prediction task,
delivering the best overall performance and thus serving as the recommended algorithm for developing an
automated early diabetes risk stratification system.

5.4  Hyperparameter Optimization

The hyperparameter search spaces were tailored to each model. For logistic regression, the primary focus
was the regularization strength C, with values tested in [0.1, 1, 10]; L2 regularization and the liblinear solver
were fixed. For K-nearest neighbors, the optimal number of neighbors k was explored within [3, 5, 7]. The
support vector classifier optimized both the regularization parameter C in [0.1, 1, 10] and the kernel coefficient
gamma in ['scale’, 0.1], with the RBF kernel fixed. The decision tree primarily tuned maximum depth in [3, 5,
7]. For random forest, the number of trees in [50, 100] and maximum depth in [5, 7] were jointly optimized.

5.4.1 Logistic Regression

Table 5: Hyperparameter Tuning for Logistic Regression

Parameter Combination AUC-ROC Accuracy Precision Recall F1-Score Ranking
C=0.1 0.7970 0.7316 0.6184 0.5875 0.6026 3
c=1 0.7977 0.7403 0.6351 0.5875 0.6104 1
c=10 0.7981 0.7403 0.6351 0.5875 0.6104 2

5.4.2 KNN

Table 6. Hyperparameter Tuning for KNN
Parameter Combination AUC-ROC Accuracy Precision Recall F1-Score Ranking
n_neighbors=3 0.7127 0.6753 0.5294 0.5625 0.5455 3
n_neighbors=5 0.7371 0.7056 0.5667 0.6375 0.6000 2
n_neighbors=7 0.7709 0.7273 0.5955 0.6625 0.6272 1

543 SVM

Table 7: Hyperparameter Tuning for SVM
Parameter Combination AUC-ROC Accuracy Precision Recall F1-Score Ranking
C=0.1, gamma=scale 0.8102 0.7532 0.7347 0.4500 0.5581 2
C=0.1, gamma=0.1 0.8103 0.7446 0.6981 0.4625 0.5564 1
C=1, gamma=scale 0.7935 0.7446 0.6479 0.5750 0.6093 3
C=1, gamma=0.1 0.7980 0.7273 0.6164 0.5625 0.5882 4
C=10, gamma=scale 0.7332 0.6926 0.5652 0.4875 0.5235 6
C=10, gamma=0.1 0.7507 0.7056 0.5857 0.5125 0.5467 5

5.4.4 Decision Tree

Table 8: Hyperparameter Tuning for Decision Tree

Parameter Combination AUC-ROC Accuracy Precision Recall F1-Score Ranking
max_depth=3 0.7480 0.7186 0.7143 0.3125 0.4348 2
max_depth=>5 0.7596 0.7359 0.6462 0.5250 0.5793 1
max_depth=7 0.6928 0.6580 0.5048 0.6625 0.5730 3
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5.4.5 Random Forest
Table 9: Hyperparameter Tuning for Random Forest

Parameter Combination AUC-ROC Accuracy Precision Recall F1-Score Ranking
n_estimators=50, max_depth=5 0.8021 0.7532 0.6533 0.6125 0.6323 3
n_estimators=50, max_depth=7 0.8105 0.7359 0.6203 0.6125 0.6164 2
n_estimators=100, max_depth=5 0.8055 0.7446 0.6400 0.6000 0.6194 4
n_estimators=100, max_depth=7 0.8167 0.7532 0.6456 0.6375 0.6415 1

For optimizing indicator selection, we use the AUC-ROC value on the test set as the main evaluation
criterion. This approach differs from traditional cross-validation. We directly divide the dataset into a 70%
training set and a 30% test set, train the model on the training set, and evaluate its performance on the test set.
Although this method is less robust than cross-validation, it provides a feasible alternative when computational
resources are limited.

The performance evaluation results show that hyperparameter tuning indeed led to an improvement in the
model's performance. By comparing the performance of the models before and after tuning, we found that each
model had varying degrees of improvement in the AUC-ROC metric. Specifically, logistic regression
improved its generalization ability by adjusting the regularization strength while preventing overfitting; K-
nearest neighbors better balanced bias and variance by optimizing the number of neighbors; support vector
machines optimized the classification boundary by adjusting the kernel parameters; decision trees and random
forests improved the prediction stability by controlling the model complexity.

It should be noted that due to the simplified tuning approach, performance gains may be constrained.
Compared to full grid search with cross-validation, our method sacrifices parameter space coverage and
evaluation robustness. Nevertheless, under the given computational and time constraints, this approach
effectively enhanced model performance and delivered a practical solution for diabetes prediction.

6. Feature Importance Analysis

6.1 Feature Importance Analysis Using Logistic Regression

Figure 10: Feature Importance Analysis for Logistic Regression

Logistic Regression - Permutation Feature Importance
(Top 8 Features)

Glucose 0.17B8
BMI 4 0.0473
Pregnancies - 0.0138
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Age{  0.0064

Insulin 4 0.0026

BloodPressure 4 0.0015

skinThickness 4 0.0012

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Permutation Feature Importance

Based on permutation feature importance analysis, this study identified key determinants for predicting
diabetes risk. Glucose levels emerged as the strongest predictor, with significantly higher importance than
other variables, a finding consistent with diabetes' core pathophysiological mechanism of impaired glucose
metabolism. Body Mass Index (BMI), the second most important feature, underscores the pivotal role of
obesity-related metabolic abnormalities in disease onset. Additionally, pregnancy history (Pregnancies) and
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diabetes pedigree function (DiabetesPedigreeFunction) respectively revealed significant contributions from
reproductive health factors and genetic susceptibility. These findings not only validate clinical understanding
but also underscore the necessity of multidimensional risk assessment for precision diabetes prevention,
providing quantitative evidence for establishing comprehensive prevention and control strategies.

6.2 Feature Importance Analysis for the KNN (k=5) Model

Figure 11: Feature Importance Analysis for KNN (k=5)
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Permutation-based feature importance analysis using the K-nearest neighbors (k=5) model again confirmed
Glucose as the dominant predictor of diabetes risk, with an importance score of 0.1129, markedly ahead of all
others. BMI and Age ranked second and third, respectively, highlighting the synergistic roles of metabolic
health and age-related physiological changes in disease progression. Notably, compared to logistic regression,
the KNN model assigned greater importance to Age, while SkinThickness and Insulin also gained relatively
higher contributions, reflecting the algorithm’s sensitivity to local feature interactions. These findings reinforce
the multidimensional nature of diabetes risk factors and underscore the unique strengths of different predictive
models in capturing specific pathophysiological mechanisms.

6.3 Feature Importance Analysis for the Support Vector Machine (SVM) Model

Figure 12: Feature Importance Analysis for Support Vector Machine (SVM)

Support Vector Machine - Permutation Feature Importance
(Top 8 Features)
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Permutation-based feature importance analysis using the support vector machine (SVM) model once again
identified Glucose as the predominant predictor of diabetes risk, with an importance score of 0.15, substantially
surpassing all others. Notably, DiabetesPedigreeFunction emerged in second place, highlighting the SVM’s
distinctive strength in detecting complex, nonlinear genetic patterns. The model’s advantage lies in its kernel
trick, which effectively captures intricate feature interactions, particularly valuable for delineating non-linear
decision boundaries associated with genetic susceptibility. However, its limitations include high sensitivity to
parameter settings and relatively poor interpretability, which may lead to overemphasis on certain features.
Overall, the SVM demonstrates unique value in uncovering genetic risk patterns in diabetes, but requires
careful parameter tuning to ensure result robustness.

6.4  Feature Importance Analysis for the Decision Tree Model

Figure 13: Feature Importance Analysis for Decision Tree
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(Top 8 Features)
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Based on the dual evaluation of built-in and permutation feature importance in the random forest model,
Glucose consistently ranked as the strongest predictor of diabetes risk under both paradigms, with a built-in
importance score of 0.3313 and a permutation importance of 0.1348-both markedly higher than all other
features. Notably, BMI and Age ranked second and third in built-in importance with scores of 0.1615 and
0.1380, respectively, underscoring random forest’s strength in integrating multidimensional metabolic and
demographic features while capturing complex feature interactions (e.g., synergistic effects between metabolic
markers and age). The model’s advantages stem from its ensemble learning strategy, which effectively
mitigates overfitting, delivering excellent stability and robustness in modeling intricate inter-feature
relationships. However, its drawbacks include high computational complexity and performance degradation
in high-dimensional, low-sample settings. The appearance of negative values for minor features (e.g.,
BloodPressure) under permutation importance also reflects variability in contribution estimates under extreme
conditions. Overall, the random forest model exhibits dual strengths in comprehensiveness and stability for
identifying diabetes risk features; however, it requires careful optimization in balancing computational
resources and feature dimensionality to ensure reproducible results.
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6.5  Feature Importance Analysis for the Random Forest Model

Figure 14: Feature Importance Analysis for Random Forest
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Based on the dual evaluation of built-in and permutation feature importance in the random forest model,
Glucose consistently ranked as the strongest predictor of diabetes risk across both paradigms, with a built-in
importance of 0.3313 and a permutation importance of 0.1348-both substantially exceeding all other features.
Notably, BMI and Age ranked second and third in built-in importance with scores of 0.1615 and 0.1380,
respectively, demonstrating random forest’s strength in integrating multidimensional metabolic and
demographic features while capturing complex feature interactions (e.g., synergistic effects between metabolic
indicators and age).

The model’s advantages arise from its ensemble learning framework, which effectively reduces overfitting
risk, delivering superior stability and robustness in modeling intricate inter-feature relationships. However, its
drawbacks include high computational complexity and susceptibility to performance degradation when feature
dimensionality greatly exceeds sample size. The occurrence of negative values for minor features (e.g.,
BloodPressure) under permutation importance also reflects variability in contribution estimates under extreme
conditions.

In summary, the random forest model demonstrates dual value in terms of comprehensiveness and stability
in identifying diabetes risk features; however, careful optimization is required to balance computational
resources and feature dimensionality, thereby ensuring the reproducibility of results.

6.6  Summary of Feature Importance Analysis

A comprehensive analysis across the five machine learning models consistently identified Glucose as the
strongest predictor of diabetes risk, with importance far surpassing all other features-a finding that aligns
closely with the core pathophysiology of diabetes, namely impaired glucose metabolism, thereby validating
the primacy of glucose monitoring in diabetes screening.

Body mass index (BMI) ranked second in most models, underscoring the pivotal role of obesity-related
metabolic dysregulation in the pathogenesis of type 2 diabetes. Age, as a key demographic factor, emerged
prominently in the KNN, random forest, and decision tree models, reflecting age-related declines in insulin
sensitivity and B-cell function.

Notably, DiabetesPedigreeFunction exhibited significantly elevated importance in the SVM model,
highlighting the critical influence of genetic predisposition in specific populations. Pregnancies further
revealed complex associations between reproductive health and metabolic disease. These insights collectively
reinforce the multidimensional nature of diabetes risk and provide a robust foundation for precision prevention
strategies.
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7. Conclusion

7.1  Key Findings

The random forest model demonstrated the highest robustness and capacity to capture feature interactions,
making it particularly well-suited as a comprehensive risk assessment tool. Decision trees, while offering
strong interpretability, exhibited limited stability and are thus better applied to individualized risk
interpretation. Support vector machines excelled in identifying complex patterns, rendering them especially
appropriate for genetic risk analysis. Logistic regression and K-nearest neighbors, in turn, showed distinct
strengths in modeling linear relationships and detecting local patterns, respectively.

7.2 Limitations

This study has several limitations that warrant discussion. First, the relatively small sample size of the
dataset may compromise the models’ generalizability to broader populations. Second, the feature engineering
process was comparatively simplified and did not fully account for temporal dynamics in diabetes progression.
Third, substantial differences in interpretability exist across algorithms, with complex models such as support
vector machines offering limited transparency in their decision-making processes. Additionally, the absence
of an external independent validation cohort restricts the generalizability of the findings. Finally, all analyses
were conducted using cross-sectional data, precluding causal inference.

This study systematically compared five machine learning algorithms for diabetes risk prediction and
identified random forest as the optimal model. It not only achieved superior predictive accuracy (AUC = 0.81)
but also exhibited excellent robustness and interpretability in feature importance analysis. Through dual
validation using built-in and permutation-based feature importance, the study confirmed plasma glucose, body
mass index (BMI), and age as the three core predictors of diabetes risk-findings highly consistent with the
underlying pathophysiology of the disease.

The superiority of the random forest model lies in its ability to effectively capture complex feature
interactions while maintaining strong generalization performance. Compared to other models, it demonstrated
clear advantages in handling high-dimensional features and resisting overfitting, establishing it as a reliable
computational tool for diabetes risk prediction.

The innovative value of this study lies not only in identifying the optimal predictive model but also in
deepening the understanding of diabetes risk factors through multifaceted feature importance analysis. The
findings provide primary healthcare institutions with an accurate and stable tool for early diabetes screening,
carrying significant public health implications. Future research should focus on translating this model into
practical clinical applications, thereby facilitating a shift in diabetes prevention and control from traditional
experience-based approaches to precision prediction paradigms. Ultimately, this will enable earlier
intervention in disease management and the optimized allocation of healthcare resources.
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