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Abstract 

Acquired resistance to targeted and immune therapies severely limits the success of non-small cell lung cancer 
(NSCLC) treatment. Single-cell sequencing technologies now empower researchers to dissect this resistance 
at unprecedented resolution, moving beyond the averaging limitations of bulk genomics. This review 
highlights how single-cell and spatial multiomics approaches reveal key mechanisms of NSCLC resistance, 
from rare drug-tolerant subpopulations and cellular plasticity to immunosuppressive niches and metabolic 
adaptation within the TME. We also discuss emerging strategies-such as liquid biopsy and AI-driven data 
integration-that hold promise for translating these insights into more effective therapeutic interventions. 
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1. Introduction 
Lung cancer remains the leading cause of cancer-related deaths worldwide, with non-small cell lung cancer 

(NSCLC) accounting for the vast majority of cases and posing a significant public health challenge[1]. In 
recent years, breakthrough advances have been made in NSCLC treatment strategies, particularly with tyrosine 
kinase inhibitors (TKIs) that target specific driver genes (e.g., EGFR) and immune checkpoint inhibitors (e.g., 
PD-1/PD-L1), which have significantly improved outcomes for patients with advanced disease[2, 3]. 

However, acquired resistance is almost inevitable, ultimately leading to treatment failure and disease 
recurrence, representing a major obstacle to long-term patient survival[4]). Traditional views hold that 
resistance primarily arises from preexisting clones or new mutations selected under therapeutic pressure. 
However, bulk sequencing technologies based on population-level analysis provide only average signals and 
fail to capture the high degree of intratumoral heterogeneity. This limitation obstructs the understanding of 
rare resistant subpopulations, nongenetic adaptive mechanisms, and interactions within the tumor 
microenvironment (TME)[5]. In reality, treatment resistance is a dynamic process driven by the intrinsic 
plasticity of tumor cells (e.g., cell state transitions), clonal evolution, and remodeling of the TME[6, 7]. 

The emergence of single-cell sequencing technologies has provided a revolutionary tool for in-depth 
dissection of this complex system[8]. Techniques such as single-cell RNA sequencing (scRNA-seq) enable 
unbiased identification of all cell types within the tumor ecosystem, revealing previously unknown resistant 
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cell subpopulations[6, 9]. Integrated multiomics approaches (e.g., combining scRNA-seq with scATAC-seq) 
further reveal upstream transcriptional regulation and epigenetic networks underlying resistant phenotypes[10, 
11]. More advanced spatial transcriptomic and genomic technologies preserve the spatial context of cells 
within native tissue, helping to address critical questions such as “where are the resistant cells located?” and 
“with whom do they interact?”, thereby elucidating specialized niches of resistance such as those facilitating 
immune evasion[12, 13]. Together, these technologies are shifting NSCLC resistance research from a “static, 
population-level” perspective to a “dynamic, high-resolution, ecosystem-level” understanding. 

This review aims to systematically outline how single-cell sequencing technologies profoundly transform 
our understanding of treatment resistance in NSCLC. First, we introduce the fundamental methodologies of 
single-cell technologies[14, 15]. We then highlight their applications in uncovering cell-intrinsic mechanisms 
of resistance (e.g., identifying resistant subclones and tracking state transitions)[6, 9, 13], dissecting the 
regulatory roles of the tumor microenvironment [16, 17], and leveraging multiomics and spatial technologies 
to map the resistant ecosystem [11-13]. Finally, we discuss current challenges in computational analysis and 
clinical translation and envision future directions, such as integrating liquid biopsy with single-cell sequencing 
and employing artificial intelligence for multidimensional data integration. 

2. The Technological Landscape and Methodological Foundations of Single-Cell Sequencing 

2.1  Development History of the Technology and Core Workflow 
Single-cell RNA sequencing (scRNA-seq), a revolutionary technology for resolving cellular heterogeneity, 

has significantly advanced precision medicine research, particularly in the study of treatment resistance 
mechanisms in non-small cell lung cancer (NSCLC)[14]. scRNA-seq enables the detection of rare cell 
subpopulations and transcriptional states that are undetectable by conventional bulk sequencing, providing 
unprecedented resolution for understanding tumor heterogeneity and therapy resistance[15]. 

The technical workflow of scRNA-seq primarily involves the following key steps: single-cell isolation, cell 
lysis and mRNA capture, reverse transcription and cDNA amplification, library preparation and high-
throughput sequencing, followed by bioinformatic analysis[14]. Methods for single-cell isolation include 
fluorescence-activated cell sorting (FACS), laser capture microdissection (LCM), and microfluidic 
technologies, with the choice of method depending on sample type and research objectives[15]. 

In terms of whole-transcriptome amplification (WTA) methods, different technological platforms exhibit 
distinct characteristics. The SMART-seq2 method, which is based on the switching mechanism at the 5’ end 
of the RNA template (SMART) principle, is suitable for alternative splicing and mutation analysis. In contrast, 
droplet-based systems employing 3’-end enrichment (e.g., 10x Genomics) are better suited for large-scale cell 
atlas construction[14, 15]. These technical features allow researchers to select the most appropriate platform 
on the basis of specific research needs in NSCLC, such as identifying rare resistant cell populations or 
comprehensively profiling tumor heterogeneity. 

The characteristic high sparsity and technical noise (e.g., dropout events) of single-cell data pose unique 
challenges for analysis. Current approaches primarily employ unique molecular identifier (UMI)-based 
normalization methods and specially designed statistical models (e.g., negative binomial distributions) to 
address these technical variations[14]. Furthermore, advancements in dimensionality reduction techniques 
(e.g., PCA, t-SNE, and UMAP) and clustering algorithms have greatly enhanced the ability to identify cell 
subpopulations, providing powerful tools for discovering therapy-resistant clusters in NSCLC. 

The continued maturation of scRNA-seq technology and the widespread adoption of commercial platforms 
have established it as a core tool for investigating tumor microenvironment heterogeneity, clonal evolution 
mechanisms, and treatment resistance in NSCLC, offering critical technical support for the development of 
novel therapeutic strategies. 

2.2 Technical and Biological Principles of scRNA-seq 
Single-cell RNA sequencing (scRNA-seq) fundamentally aims to resolve heterogeneity in gene expression 

among individual cells, overcoming the averaging effect of traditional bulk sequencing and providing key 
insights into drug resistance mechanisms within the tumor microenvironment[8]. 
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The scRNA-seq workflow begins with efficient isolation of single cells. Commonly used methods include 
fluorescence-activated cell sorting (FACS), microfluidic platforms (such as Fluidigm C1), and droplet-based 
high-throughput systems (e.g., 10x Genomics). Microfluidic systems perform cell lysis and reverse 
transcription in nanoliter-scale reaction volumes, significantly improving sensitivity but requiring specific cell 
size criteria. Droplet systems, on the other hand, enable massively parallel processing and are particularly 
suitable for identifying rare cell types, such as drug-resistant subpopulations in NSCLC[8]. 

At the molecular level, different amplification strategies offer distinct advantages: full-length transcript 
methods (e.g., SMART-Seq2) are suitable for alternative splicing and mutation analysis, whereas 3′ end 
tagging methods (such as CEL-Seq and Drop-seq) improve quantification accuracy and throughput, making 
them more appropriate for large-scale cell atlas construction. To correct for technical noise, unique molecular 
identifiers (UMIs) and external RNA controls (e.g., ERCC spike-ins) are widely used to achieve absolute 
quantification of RNA molecules and accurately distinguish technical variation from true biological 
heterogeneity[8]. 

The biological value of scRNA-seq is most prominently demonstrated in its ability to uncover previously 
unknown cell subtypes and resolve dynamic processes. Through cluster analysis, principal component analysis 
(PCA), and pseudotime trajectory inference, researchers can identify critical regulatory genes and cell fate 
branch points, revealing tumor evolutionary pathways and drug resistance mechanisms[8]. This technology 
has become a core tool for studying NSCLC heterogeneity, clonal evolution, and treatment resistance, 
providing critical evidence for developing combination therapies. 

2.3 From Single-Cell to Multiomics and Spatial Resolution 
Single-cell RNA sequencing (scRNA-seq) can reveal cellular heterogeneity in NSCLC, yet transcriptomic 

data alone are insufficient to fully elucidate the mechanisms underlying treatment resistance. In recent years, 
advances in single-cell multiomics and spatial omics technologies have enabled the integration of 
multidimensional information at single-cell and spatial resolutions, providing new avenues for understanding 
NSCLC resistance. 

Multiomics technologies such as iscCOOL-seq allow simultaneous detection of transcriptomic and 
epigenomic information within the same cell. Studies indicate that epigenetic preregulation in NSCLC may be 
associated with early activation of drug resistance genes [18]. Spatial multiomics approaches such as BaSISS 
(base-specific in situ sequencing) enable quantitative analysis of subclonal distribution across entire tumor 
sections, integrating transcriptomic and protein data to reveal spatial expansion patterns of clones and their 
interactions with the microenvironment. Research suggests that NSCLC exhibits significant spatial segregation 
of subclones and heterogeneous transcriptional states, with evolutionary trajectories that are not synchronized 
with histological progression, providing clues to the evolution of resistant subpopulations (Dressler et al., 
2022). Furthermore, technologies such as multiplex immunofluorescence (mIHC) and in situ sequencing (ISS) 
allow simultaneous analysis of RNA and protein within spatial contexts and identification of immune 
composition and cell‒cell communication in the tumor microenvironment, thereby helping to decipher the 
architecture and regulatory networks of resistance niches in NSCLC [12]. 

In summary, the integration of multiomics and spatial technologies is advancing NSCLC research from cell 
classification toward mechanistic exploration and spatial ecosystem reconstruction; significantly enhancing 
the understanding of tumor heterogeneity, the microenvironment, and treatment resistance; and offering new 
perspectives for targeted therapies and overcoming drug resistance. 

3. scRNA-seq Decodes the Cell-intrinsic Mechanisms of Drug Resistance 

3.1 Identification of Drug-Resistant Cell Subpopulations 
Single-cell RNA sequencing (scRNA-seq) has significantly advanced our understanding of resistance 

mechanisms to tyrosine kinase inhibitors (TKIs) in EGFR-mutated non-small cell lung cancer (NSCLC) 
because of its high-resolution capabilities. By revealing tumor cellular heterogeneity and identifying key 
resistant subpopulations, this technology provides critical insights into the cellular basis of treatment resistance 
[7]. 



Vol. 12 (2026): Proceedings of the 2026 International Conference on Life Sciences and Health Engineering (IC-LSHE 2026) 

 64 

Kim et al. performed scRNA-seq on over 200,000 cells from 44 lung adenocarcinoma patients and 
identified a cancer cell subpopulation (tS2) that dominated in the metastatic stage. This subpopulation exhibits 
a transcriptomic profile completely divergent from the normal epithelial differentiation trajectory, with 
upregulated genes related to cell motility, aberrant proliferation, and apoptosis escape. The tS2 subpopulation 
was significantly enriched in advanced and metastatic samples, and its presence was strongly associated with 
reduced overall survival, suggesting that the tS2 phenotype may be a key driver of lung cancer progression 
and treatment resistance [7]. 

In another study focused on EGFR-TKI resistance, Kashima et al. integrated scRNA-seq with single-cell 
ATAC-seq (scATAC-seq) to perform multiomics analysis on resistant cell lines and clinical samples. Their 
work revealed highly heterogeneous transcriptional and epigenetic regulatory patterns in drug-tolerant 
persistent (DTP) cells. In addition to known resistance-related genes such as AURKA, VIM, and AXL, CD74 
was identified as a novel candidate gene that was significantly upregulated in DTP cells. It mediates 
osimertinib tolerance by inhibiting apoptosis and promoting BCL-XL expression. Differential activation of 
AURKA, VIM, or CD74 has been observed not only among different patients but also within individual tumors, 
highlighting the diversity of resistance mechanisms and the clinical importance of intratumoral heterogeneity 
[7]. 

These studies demonstrate the powerful ability of scRNA-seq to identify treatment-resistant cell 
subpopulations and underscore its value in identifying potential therapeutic targets and prognostic biomarkers. 

3.2 Revealing Non-Genetic Functional Plasticity 
In addition to genetic alterations, the nongenetic functional plasticity exhibited by tumor cells under the 

pressure of targeted therapy serves as a crucial mechanism mediating drug resistance. For the first time, 
Maynard et al. performed scRNA-seq on 49 biopsy samples from 30 patients with advanced NSCLC collected 
at three stages: before targeted therapy (treatment-naïve, TN), at residual disease (RD), and at progressive 
disease (PD), systematically revealing therapy-induced tumor cell state evolution in clinical samples [4]. 

The study revealed that cancer cells in the RD state highly express gene signatures associated with alveolar 
regeneration (e.g., SFTPB/C/D, *NKX2-1*, AQP4, AGER), suggesting that they may adapt to therapeutic 
pressure through dedifferentiation or acquisition of a stem-like state, entering a slowly proliferating but 
reparative “persister cell” state [4]. This alveolar signature was significantly associated with better overall 
survival in patients and was validated in preclinical models [4]. Further mechanistic studies revealed the 
activation of the WNT/β-catenin pathway in RD cells (e.g., the upregulation of SUSD2 and CTNNB1), and 
the combined use of a WNT inhibitor significantly increased the efficacy of TKIs [4]. 

In contrast, cancer cells at the PD stage exhibited a distinctly different transcriptional state, with upregulated 
genes related to immunosuppression (e.g., kynurenine pathway genes IDO1 and KYNU), cell invasion 
(plasminogen activation pathway), and intercellular communication (gap junction proteins) [4]. These changes 
collectively promote a more aggressive and immune-evasive drug-resistant phenotype. 

This study provides the first in vivo evidence in humans that targeted therapy can drive reversible 
transcriptional reprogramming in lung cancer cells, enabling escape from drug-induced cell death. This state-
dependent resistance does not rely on genetic mutations but is achieved through the activation of 
developmental or damage repair-related pathways, offering a theoretical foundation for novel treatment 
strategies targeting “cell states” rather than “genetic alterations” [4]. 

3.3 Tumor Heterogeneity and Clinical Outcomes 
Tumor heterogeneity is not only a core feature of cancer progression but also a critical determinant of 

variations in treatment response and clinical outcomes. Single-cell RNA sequencing (scRNA-seq) technology 
provides unprecedented resolution for deciphering the complexity of the cellular composition within tumors, 
enabling researchers to identify specific cell subpopulations associated with poor prognosis and to elucidate 
their functional states and interaction networks at the single-cell level. 

Hu et al. [6] systematically revealed a high degree of heterogeneity in clear cell renal cell carcinoma 
(ccRCC) through scRNA-seq analysis. The study identified 15 major cell types and 39 cell subpopulations, 
including various immune and stromal cells derived from both tumor and nonmalignant tissues [6]. Importantly, 
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the existence of these cell subpopulations was validated via immunofluorescence on tissue microarrays. 
Furthermore, the CIBERSORTx algorithm was used to deconvolve the cellular composition of 533 patients 
from the TCGA-KIRC cohort, and the researchers stratified patients into three subgroups with significantly 
distinct prognoses. One subgroup, characterized by a lower proportion of activated CD8⁺ T cells and a higher 
proportion of exhausted CD8⁺ T cells, was significantly associated with poorer overall survival [6]. This 
finding not only confirms the central role of T-cell exhaustion in the immunosuppressive microenvironment 
of ccRCC but also suggests that the ratio of exhausted T cells could serve as an important prognostic biomarker. 

Additionally, metabolic dysregulation is not confined to tumor cells but is also widespread among stromal 
cells within the tumor microenvironment. For example, cancer-associated fibroblasts (CAFs) exhibit 
significant upregulation of genes related to lipid metabolism (such as FABP5), which cooccur in a tumor tissue-
specific manner [6]. Through SCENIC analysis, researchers further revealed transcription factor networks 
regulating these aberrant metabolic states, including altered expression of PPAR signaling pathway members 
in tumor cells and activation of CEBPB and KLF6 in fibroblasts [6]. These findings underscore the 
pervasiveness and cell-type specificity of metabolic reprogramming in the tumor microenvironment, providing 
new insights into the functional consequences of tumor heterogeneity. 

In summary, scRNA-seq technology not only enables detailed characterization of intratumoral cellular 
heterogeneity but also directly links specific cell subpopulations to clinical outcomes, thereby revealing key 
cell states and molecular mechanisms driving disease progression. These studies provide a theoretical basis for 
developing precise therapeutic strategies targeting specific cell subpopulations and highlight the great potential 
of single-cell technologies in prognostic assessment and personalized cancer treatment. 

4. Multiomics and Spatial Technologies for Deciphering the Drug Resistance Ecosystem 

4.1 Integrated Multiomics: Bridging Phenotype and Regulation 
Single-cell RNA sequencing (scRNA-seq) can reveal heterogeneity in cellular states, yet its limitations in 

deciphering regulatory mechanisms have prompted researchers to integrate multiomics data to 
comprehensively understand the molecular basis of drug resistance. Although the study by Sathe et al. focused 
on gastric cancer, its research paradigm offers valuable insights for understanding drug resistance in lung 
cancer. Using scRNA-seq, 56,167 cells from tumor tissues, paired normal tissues, and peripheral blood 
mononuclear cells (PBMCs) from seven gastric cancer patients and one patient with intestinal metaplasia were 
analyzed, and the remodeling of the cellular composition and transcriptional reprogramming within the tumor 
microenvironment (TME) were systematically characterized [11]. A previous study revealed that tumor 
epithelial cells exhibit distinct copy number alterations (CNAs) and unique gene expression programs, along 
with significant intratumoral heterogeneity [11]. More importantly, the research extended beyond the 
transcriptome by computationally inferring CNAs [19] and validating key protein expression via multiplex 
immunofluorescence, demonstrating the value of multiomics integration in verifying findings and enhancing 
the reliability of conclusions [11]. 

Furthermore, the study employed regulatory network analysis (e.g., SCENIC [20] to identify key 
transcription factors (regulons) that drive state transitions across different cell types within the TME. For 
example, noncanonical M1/M2 regulators such as NFKB1 and ETS2 were identified in tumor-associated 
macrophages [11]. This integrated approach combining transcriptomics and regulatory network analysis 
provides a methodological foundation for understanding the dynamic regulation of immune and tumor cells 
under therapeutic pressure in lung cancer. Similarly, in lung cancer research, multiomics approaches 
integrating scRNA-seq with chromatin accessibility (scATAC-seq) or proteomics (CITE-seq) can more 
precisely identify key regulatory pathways driving resistant phenotypes, such as the epithelial‒mesenchymal 
transition (EMT)-associated transcriptional program observed in resistance to EGFR inhibitors [4, 9]. 

In summary, the study by Sathe et al. demonstrated how scRNA-seq combined with computational methods 
for inferring CNAs and regulatory networks can link transcriptional phenotypes to upstream regulatory 
mechanisms at single-cell resolution [11]. This strategy provides an important reference for systematically 
dissecting the multiomics basis of drug resistance in lung cancer. 
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4.2 Core Role of the Tumor Microenvironment 
The tumor microenvironment (TME) is a highly complex and dynamically evolving ecosystem composed 

of cancer cells, immune cells, stromal cells (such as cancer-associated fibroblasts (CAFs) and endothelial cells), 
and noncellular components such as the extracellular matrix (ECM). In the development of treatment resistance 
in non-small cell lung cancer (NSCLC), the TME not only provides a physical barrier but also actively 
mediates immune evasion and drug tolerance through diverse cell‒cell interactions and signaling pathways 
[18]. The application of single-cell sequencing technologies now enables the dissection of functional states 
and interaction networks among cellular components within the TME at unprecedented resolution, revealing 
its central role in drug resistance. 

4.2.1 Formation of Immunosuppressive Cell Populations and the Drug-Resistant Niche 
The immune cell infiltration status in the tumor microenvironment (TME) is a critical determinant of the 

response to immunotherapy. Studies have demonstrated that non-small cell lung cancer (NSCLC) tissues 
harbor abundant regulatory T cells (Tregs), M2-type tumor-associated macrophages (TAMs), and exhausted 
T cells, which collectively establish an immunosuppressive microenvironment [16]. Hu et al. [6] used scRNA-
seq to show that anti-PD-1-resistant NSCLC patients have increased levels of exhausted CD8⁺ T cells (which 
express checkpoint molecules such as LAG3 and TIM-3), Tregs, and TAMs in the TME [6]. These cells 
suppress antitumor immunity either by secreting inhibitory cytokines such as TGF-β and IL-10 or through 
direct interaction with T cells via surface molecules such as PD-L1, ultimately leading to immunotherapy 
failure. 

Single-cell studies have further revealed that immune cells in the TME do not exist as discrete static entities 
but rather exhibit a continuous phenotypic spectrum. Through scRNA-seq analysis of 45,000 immune cells 
from the breast cancer TME, Azizi et al. reported that both T cells and myeloid cells in tumors displayed 
significant phenotypic expansion, occupying a “phenotypic space” far broader than that in normal tissues [16]. 
This continuity was particularly evident in T cells, where the activation status-defined by the expression of 
activation signature genes-followed a broad continuous distribution rather than falling into discrete 
intermediate states [16]. This suggests that traditional cell classification (e.g., naïve T cells, effector T cells, 
exhausted T cells) may oversimplify the actual states of immune cells in the TME. This continuous phenotypic 
diversity is partly driven by T-cell receptor (TCR) diversity, but more importantly, it reflects T-cell responses 
to diverse combined environmental cues within the TME, such as varying levels of inflammatory signals, 
hypoxia, and nutrient deprivation [16]. Therefore, therapeutic strategies aimed at reversing 
immunosuppression by targeting the TME may need to address multiple continuous functional states 
simultaneously rather than target a single cell subset. 

4.2.2 Metabolic Reprogramming and Immunosuppression 
Metabolic dysregulation in the tumor microenvironment (TME) represents another critical factor 

contributing to therapy resistance. Metabolic competition between tumor cells and stromal cells can lead to 
microenvironmental acidosis and nutrient depletion (e.g., tryptophan, arginine), thereby impairing the function 
of T cells and NK cells [21]. Single-cell analysis enables simultaneous capture of the metabolic states of both 
cancer and stromal cells. For example, in clear cell renal cell carcinoma (ccRCC), Hu et al. utilized scRNA-
seq to reveal not only significant lipid metabolic abnormalities in cancer cells but also distinct metabolic 
reprogramming features in tumor-infiltrating stromal cells (including macrophages and fibroblasts). This 
widespread metabolic alteration may contribute to the establishment of an immunosuppressive TME [6]. 
Similar mechanisms of metabolic competition are likely present in NSCLC and may mediate resistance to both 
targeted therapy and immunotherapy. 

4.2.3 Dynamic Evolution of the TME and Therapeutic Intervention 
Notably, the TME is not static but rather undergoes dynamic evolution under therapeutic pressure. 

Conventional chemotherapy, radiotherapy, targeted therapy, and even immunotherapy itself can reshape the 
cellular composition and functional state of the TME [22]. For example, studies in breast cancer have revealed 
that residual tumors following neoadjuvant chemotherapy often exhibit more pronounced immunosuppressive 
features, including increased proportions of Tregs, elevated levels of M2-type TAMs, and functional 
exhaustion of CD8+ T cells [23]. Single-cell technologies enable tracking of such dynamic changes. Research 
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by Azizi et al. demonstrated that immune cell states in the TME are highly plastic and shaped by both TCR 
signals and local environmental cues [16]. These findings suggest that combination therapies should fully 
account for the dynamic nature of the TME. For example, concurrently targeting TAMs or CAFs alongside 
immunotherapy may reverse drug resistance. 

In summary, the TME actively contributes to the development of therapeutic resistance in NSCLC through 
complex interactions among diverse cellular and noncellular components. Leveraging single-cell and spatial 
multiomics technologies to deeply dissect the cellular heterogeneity, interaction networks, and dynamic 
evolution of the TME will provide critical insights for developing novel combination strategies to overcome 
resistance. 

4.3 Spatial Multiomics: Mapping the Drug-Resistant Niche 
While traditional single-cell sequencing technologies can reveal heterogeneity in tumor cells and the 

microenvironment, they miss the spatial context of cells within tissues-information critical for understanding 
the spatial distribution of tumor clones, cell‒cell interactions, and the formation of drug-resistant niches. 
Recently, emerging technologies such as spatial transcriptomics and multiplexed fluorescence in situ 
hybridization (multiplexed FISH) have enabled high-throughput molecular profiling while preserving the 
spatial context. 

In a study published in Nature (2022), Dressler et al. developed a spatial genomics workflow called Base-
Specific In Situ Sequencing (BaSISS), which allows simultaneous quantitative mapping of multiple cancer 
clones while integrating transcriptomic and microenvironmental data[13]. An analysis of multifocal breast 
cancer samples revealed that distinct clones present significantly different spatial distributions, transcriptional 
profiles, and immune microenvironment compositions across stages, including ductal carcinoma in situ (DCIS), 
invasive carcinoma, and lymph node metastasis. For example, in lymph node metastases, different subclones 
(e.g., P2-blue and P2-orange) not only display distinct histopathological growth patterns but are also associated 
with B-cell-enriched regions or hypoxic lymphatic sinus areas, suggesting clone-specific immune editing and 
adaptive evolution[13]. 

Similarly, Wu et al. (2020) identified two major cancer-associated fibroblast (CAF) subtypes-
myofibroblast-like CAFs (myCAFs) and inflammatory CAFs (iCAFs)-as well as two perivascular-like (PVL) 
cell subtypes-differentiated PVL (dPVL) and immature PVL (imPVL)-through single-cell transcriptomic 
analysis of triple-negative breast cancer (TNBC)[21]. These stromal subtypes have distinct spatial distributions: 
myCAFs are located predominantly at the tumor invasive front and are closely associated with collagen 
deposition and stromal remodeling; iCAFs are distributed farther from the tumor boundary and highly express 
chemokines (e.g., CXCL12 and CXCL13) and growth factors (e.g., IGF1 and HGF), potentially regulating 
immune cell recruitment and angiogenesis via long-range signaling, whereas dPVL cells are significantly 
correlated with the exclusion of cytotoxic T cells (CTLs), forming an “immune desert” phenotype[21]. Further 
spatial protein marker analysis (e.g., CD34, α-SMA, and CD146) confirmed the highly specific tissue 
distribution of these stromal subtypes and their significant correlation with immune cell infiltration[21]. 

Andersson et al. (2021), using imaging mass cytometry, demonstrated the diversity of cellular 
neighborhood structures in breast cancer tissues and identified spatial niches associated with poor 
prognosis[17]. By simultaneously quantifying 35 biomarkers, the authors constructed high-dimensional 
pathological images that revealed spatial interaction patterns between tumor and stromal cells. They further 
defined “single-cell pathology (SCP) subgroups” that were significantly associated with clinical outcomes. 
These subgroups not only reflect the phenotypic composition of tumor cells but also capture their spatial 
organization, providing a new dimension for understanding drug resistance[17]. 

Collectively, these studies demonstrate that drug resistance does not develop uniformly but is confined to 
specific spatial niches composed of distinct clones, stromal cells, and immune cells. Spatial multiomics 
technologies enable precise mapping of these regions, offering unprecedented insights into resistance 
mechanisms and informing the development of niche-targeted therapeutic strategies. 
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5. Discussion 
While single-cell sequencing has significantly advanced our understanding of treatment resistance in 

NSCLC, its inherent limitations continue to challenge the robustness of research conclusions. Tissue 
dissociation may induce transcriptional stress responses, distorting the in vivo cellular state [14], but the low 
capture efficiency of rare resistant subpopulations limits the comprehensive identification of key resistance 
events. Moreover, high data sparsity and batch effects significantly hinder cross-time-point and cross-sample 
comparisons, and current annotations of cell clusters remain heavily reliant on prior assumptions, introducing 
considerable subjectivity. 

Single-cell studies are inherently observational-they can reveal correlations between resistance and 
molecular phenotypes but cannot establish causality. Therefore, any inferred resistance-associated cell 
subpopulation or biomarker must undergo rigorous functional validation [9], a process that is both complex 
and costly, substantially limiting its clinical translation. 

Although this technology shows promise for translational applications, it still faces multiple bottlenecks. 
For example, dynamic monitoring based on circulating tumor cells (CTCs) remains constrained by detection 
sensitivity and insufficient technical standardization. Candidate biomarkers derived from single-cell data-such 
as intermediate EMT-state cells or specific TAM subtypes-require further validation through spatial multiplex 
fluorescence techniques and large clinical cohorts before they can serve as clinically useful indicators. 
Similarly, most mechanism-informed combination therapies (e.g., those that target AXL or the CCL2/CCR2 
axis) [6] remain in the preclinical stage, with their actual efficacy and applicable patient populations still 
awaiting confirmation. 

Future progress will rely heavily on technological innovation and multidimensional data integration. 
Although artificial intelligence and generative models hold promise for predicting clonal evolution or virtually 
screening drug combinations, their predictive reliability depends critically on data quality and algorithmic 
interpretability. Multiomics integration (e.g., transcriptomic, epigenomic, and proteomic analyses) could 
theoretically uncover multilayered regulatory networks underlying resistance [6], yet major challenges remain 
in terms of technical compatibility and analytical harmonization. Furthermore, functional validation platforms 
such as organoids combined with CRISPR screening offer new pathways for target verification [4], although 
their throughput and clinical relevance still require improvement. 

In summary, single-cell sequencing has increased resistance to single-cell resolution. However, only by 
systematically addressing multiple bottlenecks-including technical noise, data analysis limitations, and 
experimental validation-can we deepen our mechanistic understanding of the resistance ecosystem and closely 
integrate these insights with those of clinical practice to realize the full potential of this technology in precision 
medicine. 

6. Conclusion 
Single-cell sequencing technology has increased research on drug resistance in NSCLC to single-

cell resolution, profoundly revealing the critical roles of tumor heterogeneity, cellular plasticity, and 
the TME in treatment resistance [4, 7]. By identifying rare drug-resistant subpopulations, deciphering 
nongenetic functional state transitions, and characterizing immunosuppressive niches, this 
technology provides unprecedented insights into the mechanisms underlying drug resistance [9, 12]. 

However, the technology still faces multiple challenges. Technically, issues such as tissue 
dissociation-induced stress responses, low capture efficiency of rare cell subpopulations, high data 
sparsity, and batch effects constrain the accuracy and reproducibility of the data [14]. Analytically, 
studies remain largely observational and unable to establish causality directly, and cell type annotation 
still relies heavily on empirical knowledge, introducing subjectivity. From a translational perspective, 
most candidate biomarkers and mechanism-informed combination therapies remain in the preclinical 
validation stage, and their clinical utility urgently requires confirmation through large-scale cohorts 
and functional experiments [6]. 
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Future breakthroughs will depend on synergistic progress in three key areas: first, technological 
innovation and integration, necessitating improvements in sample processing protocols; second, the 
development of highly sensitive liquid biopsy techniques; and third, the convergence of single-cell 
multiomics with spatial technologies [13]. Second, intelligent computing and data analysis, leveraging 
artificial intelligence and generative models to enhance the reliability of predicting clonal evolution 
and virtually screening drug combinations, while also improving algorithmic interpretability. Third, 
functional validation systems should be strengthened by the use of platforms such as organoid models 
and CRISPR screening to efficiently verify candidate targets and mechanistic hypotheses [4]. 

In conclusion, only by systematically addressing the bottlenecks ranging from technical noise and 
data analysis limitations to clinical validation can the profound insights generated by single-cell 
sequencing be translated into precise diagnostic and therapeutic strategies that guide clinical practice, 
ultimately realizing its full potential for improving outcomes in NSCLC patients. 
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