Privacy Protection in Vehicle Platooning: Challenges, Technologies, and Future Directions
Main Article Content
Keywords
key word, vehicle platooning, privacy protection, internet of vehicles
Abstract
Vehicle platooning technology significantly enhances traffic efficiency and safety but introduces substantial privacy challenges. These include traditional threats like information leakage, data correlation, and sophisticated forgery attacks, which can mislead vehicle decisions and behaviors. To mitigate these, current research explores core protection strategies such as anonymization, differential privacy, various encryption techniques, trust management, and fine-grained access control. This paper also highlights the burgeoning role of blockchain in providing decentralized management and facilitating privacy-preserving machine learning within platooning systems. Despite advancements, significant hurdles persist concerning performance optimization, balancing security with privacy, ensuring real-time processing, guaranteeing robustness against evolving threats, and achieving standardization. This study systematically analyzes existing privacy protection technologies tailored for vehicle platooning, providing a comprehensive overview and identifying critical future research directions to foster secure and widespread adoption of this transformative technology.
References
- Adas, A., Arrigoni, S., Brambilla, M., Nicoli, M. B., & Sabbioni, E. (2025). Joint travel route optimization framework for platooning. arXiv preprint, arXiv:2504.07623.
- Aledhari, M., Razzak, R., Rahouti, M., Yazdinejad, A., Parizi, R. M., Qolomany, B., Guizani, M., Qadir, J., & Al-Fuqaha, A. (2025). Safeguarding connected autonomous vehicle communication: Protocols, intra- and inter-vehicular attacks and defenses. Computers and Security, 151, Article 104352. https://doi.org/10.1016/J.COSE.2025.104352
- Avcı, İ., & Koca, M. (2024). Intelligent transportation system technologies, challenges and security. Applied Sciences (Switzerland), 14(11), Article 4646. https://doi.org/10.3390/APP14114646
- Bensaoud, A., & Kalita, J. (2025). Optimized detection of cyber-attacks on IoT networks via hybrid deep learning models. Ad Hoc Networks, 170, Article 103770. https://doi.org/10.1016/J.ADHOC.2025.103770
- Islam, N., & Zulkernine, M. (2025). Privacy-preserving machine learning in internet of vehicle applications: Fundamentals, recent advances, and future direction. arXiv preprint, arXiv:2503.01089.
- Kang, J., Liao, J., Gao, R., Wen, J., Huang, H., Zhang, M., Yi, C., Zhang, T., Niyato, D., & Zheng, Z. (2025). Efficient and trustworthy block propagation for blockchain-enabled mobile embodied AI networks: A graph resfusion approach. arXiv preprint, arXiv:2502.09624.
- Khan, R., Mehmood, A., Song, H., & Maple, C. (2025). A decentralized, secure, and reliable vehicle platoon formation with privacy protection for autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 26(5), 6441-6450. https://doi.org/10.1109/TITS.2025.3537765
- Li, K., Li, C., Yuan, X., Li, S., Zou, S., Ahmed, S. S., Ni, W., Niyato, D., Jamalipour, A., & Dressler, F. (2025). Zero-trust foundation models: A new paradigm for secure and collaborative artificial intelligence for internet of things. arXiv preprint, arXiv:2505.23792.
- Macena, B., Albuquerque, C., & Machado, R. (2023). Cybersecurity and privacy protection in vehicular networks (VANETs). Advances in Internet of Things, 13(4), 109-118. https://doi.org/10.4236/AIT.2023.134006
- Quero, N., Boudguiga, A., Sirdey, R., & Karam, N. (2023). Towards privacy-preserving platooning services by means of homomorphic encryption [Paper presentation]. VehicleSec 2023 - Inaugural Symposium on Vehicle Security and Privacy, San Diego, CA, USA.
- Sato, T., Suzuki, R., Hayakawa, Y., Ikeda, K., Sako, O., Nagata, R., Yoshida, R., Chen, Q. A., & Yoshioka, K. (2025). On the realism of lidar spoofing attacks against autonomous driving vehicle at high speed and long distance [Paper presentation]. Proceedings of the Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA.
- Sulimany, K., Vadlamani, S. K., Hamerly, R., Iyengar, P., & Englund, D. (2024). Quantum-secure multiparty deep learning. arXiv preprint, arXiv:2408.05629.
- Wan, Q., Liu, M., Wang, L., Wang, F., & Zhang, M. (2025). Dual-policy attribute-based searchable encryption with secure keyword update for vehicular social networks. Electronics (Switzerland), 14(2), Article 266. https://doi.org/10.3390/ELECTRONICS14020266
- Wang, F., Xu, Y., Zhang, H., Zhang, Y., & Zhu, L. (2016). 2FLIP: A two-factor lightweight privacy-preserving authentication scheme for VANET. IEEE Transactions on Vehicular Technology, 65(2), 896-911. https://doi.org/10.1109/TVT.2015.2402166
- Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J., & Shen, X. S. (2017). Security and privacy in smart city applications: Challenges and solutions. IEEE Communications Magazine, 55(1), 122-129. https://doi.org/10.1109/MCOM.2017.1600267CM
- Zhang, K., Salek, M. S., Wang, A., Rahman, M., Chowdhury, M., & Lao, Y. (2025). Preparing for kyber in securing intelligent transportation systems communications: A case study on fault-enabled chosen-ciphertext attack. arXiv preprint, arXiv:2502.01848.