CoA-DTI: A Drug–Target Interaction Prediction Model Based on Co-Attention

Main Article Content

Bolun Qi

Keywords

drug–target interaction, graph neural networks, deep learning, co-attention mechanism, cross-modal feature fusion

Abstract

Accurate prediction of drug–target interactions (DTIs) is a fundamental task in AI-driven drug discovery and repositioning. While traditional experimental methods are reliable, they are often time-consuming and expensive, limiting their scalability. Recent computational approaches have shown promise but still face challenges in extracting informative representations and modeling cross-modal interactions between drugs and proteins. In this work, we propose CoA-DTI, a novel deep learning framework that integrates Graph Convolutional Networks (GCNs), Convolutional Neural Networks (CNNs), and a Co-Attention mechanism for DTI prediction. Drug molecules are encoded as molecular graphs and processed through multi-layer GCNs to capture topological and atom-level features. Protein sequences are encoded via CNNs to learn local biochemical patterns. A co-attention module is then employed to model bidirectional interactions between the drug and protein representations, enabling fine-grained and context-aware feature fusion. Extensive experiments on the benchmark Davis dataset show that CoA-DTI achieves superior performance over competitive baselines in terms of accuracy and robustness. Ablation studies further validate the effectiveness of each module. This work demonstrates the potential of integrating graph-based learning and cross-modal attention in bioinformatics applications, offering a generalizable and interpretable approach for interaction prediction.

Abstract 0 | PDF Downloads 0

References

  • Ban, T., Ohue, M., & Akiyama, Y. (2019). NRLMFβ: Beta-distribution-rescored neighborhood regularized logistic matrix factorization for improving the performance of drug–target interaction prediction. Biochemistry and Biophysics Reports, 18, Article 100615. https://doi.org/10.1016/J.BBREP.2019.01.008
  • Bhuvaneswari, R., & Kalaiselvi, K. (2012). Naive Bayesian classification approach in healthcare applications. International Journal of Computer Science and Telecommunications, 3(1), 106-112.
  • Bian, J., Zhang, X., Zhang, X., Xu, D., & Wang, G. (2023). MCANet: shared-weight-based MultiheadCrossAttention network for drug–target interaction prediction. Briefings in Bioinformatics, 24(2), Article bbad082. https://doi.org/10.1093/BIB/BBAD082
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  • Chen, L., Tan, X., Wang, D., Zhong, F., Liu, X., Yang, T., Luo, X., Chen, K., Jiang, H., & Zheng, M. (2020). TransformerCPI: Improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics, 36(16), 4406-4414. https://doi.org/10.1093/BIOINFORMATICS/BTAA524
  • Chen, X., Liu, M. X., & Yan, G. Y. (2012). Drug-target interaction prediction by random walk on the heterogeneous network. Molecular BioSystems, 8(7), 1970-1978. https://doi.org/10.1039/C2MB00002D
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1023/A:1022627411411
  • Davis, M. I., Hunt, J. P., Herrgard, S., Ciceri, P., Wodicka, L. M., Pallares, G., Hocker, M., Treiber, D. K., & Zarrinkar, P. P. (2011). Comprehensive analysis of kinase inhibitor selectivity. Nature Biotechnology, 29(11), 1046-1051. https://doi.org/10.1038/NBT.1990
  • Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). LIBLINEAR: A library for large linear classification. the Journal of machine Learning research, 9, 1871-1874.
  • Gao, M., Zhang, D., Chen, Y., Zhang, Y., Wang, Z., Wang, X., Li, S., Guo, Y., Webb, G. I., Nguyen, A. T. N., May, L., & Song, J. (2024). GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction. Computers in Biology and Medicine, 173, Article 108339. https://doi.org/10.1016/J.COMPBIOMED.2024.108339
  • Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for quantum chemistry [Paper presentation]. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia.
  • Jin, Y., Lu, J., Shi, R., & Yang, Y. (2021). EmbedDTI: Enhancing the molecular representations via sequence embedding and graph convolutional network for the prediction of drug-target interaction. Biomolecules, 11(12), Article 1783. https://doi.org/10.3390/BIOM11121783
  • Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., Lerner, J., Brunet, J. P., Subramanian, A., Ross, K. N., Reich, M., Hieronymus, H., Wei, G., Armstrong, S. A., Haggarty, S. J., Clemons, P. A., Wei, R., Carr, S. A., Lander, E. S., & Golub, T. R. (2006). The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease. Science, 313(5795), 1929-1935. https://doi.org/10.1126/SCIENCE.1132939
  • Li, H., Zhang, W., Shang, Y., & Lu, W. (2024). Collaborative prediction of drug-target interaction using sequence-based CNN and transformer [Paper presentation]. Proceedings of the 2024 27th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2024, Tianjin, China.
  • Lu, J., Yang, J., Batra, D., & Parikh, D. (2016). Hierarchical question-image co-attention for visual question answering [Paper presentation]. 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.
  • MacArron, R., Banks, M. N., Bojanic, D., Burns, D. J., Cirovic, D. A., Garyantes, T., Green, D. V. S., Hertzberg, R. P., Janzen, W. P., Paslay, J. W., Schopfer, U., & Sittampalam, G. S. (2011). Impact of high-throughput screening in biomedical research. Nature Reviews Drug Discovery, 10(3), 188-195. https://doi.org/10.1038/NRD3368
  • Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., & Kanehisa, M. (2008). Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24(13), i232–i240. https://doi.org/10.1093/BIOINFORMATICS/BTN162
  • Zhao, Q., Duan, G., Zhao, H., Zheng, K., Li, Y., & Wang, J. (2023). GIFDTI: Prediction of drug-target interactions based on global molecular and intermolecular interaction representation learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20(3), 1943-1952. https://doi.org/10.1109/TCBB.2022.3225423
  • Zhao, Q., Zhao, H., Zheng, K., & Wang, J. (2022). HyperAttentionDTI: improving drug-protein interaction prediction by sequence-based deep learning with attention mechanism. Bioinformatics, 38(3), 655-662. https://doi.org/10.1093/BIOINFORMATICS/BTAB715