Hi-C Scaffolding Challenges in Non-Model Lepidoptera

Main Article Content

Xueting Wang

Keywords

non-model lepidoptera, Hi-C scaffolding, genome assembly, quality assessment, haplotype phasing

Abstract

The limited availability of high-quality genomic resources for non-model Lepidoptera severely hampers research on their evolutionary adaptations and restricts their application in biodiversity conservation and agroforestry. This study systematically addresses a critical bottleneck-quality degradation in Hi-C scaffolding-that undermines the structural integrity of Lepidoptera genome assemblies. The findings show that intrinsic genomic features, such as high heterozygosity and abundant repetitive sequences, coupled with technical noise in Hi-C data and algorithmic limitations, frequently lead to large-scale structural errors (including misjoins, inversions, and translocations) that are not easily detected by conventional assembly metrics. To address these challenges, the paper proposes an integrated framework that combines haplotype-resolved assembly, manual curation, and multi-dimensional evaluation. This framework integrates optimized experimental and computational workflows, stringent quality control procedures, and standardized evaluation criteria to establish a comprehensive quality assurance system. Additionally, this paper emphasizes the importance of community collaboration and data transparency in fostering reproducible and scalable genomic research. Together, these advances are expected to significantly enhance the reliability and applicability of genomic resources for non-model Lepidoptera, providing a robust genetic foundation for evolutionary biology, comparative genomics and integrated pest management.

Abstract 0 | PDF Downloads 0

References

  • [1] Kawahara, A. Y., Storer, C., Carvalho, A. P. S., Plotkin, D. M., Condamine, F. L., Braga, M. P., Ellis, E. A., St Laurent, R. A., Li, X., Barve, V., et al. Evolutionary genomics of the Lepidoptera: From silkmoths to pest species. Annual Review of Entomology. 2019, 64, pp. 257-276. https://doi.org/10.1146/annurev-ento-011118-112424.
  • [2] Zhang, T., Xing, W., Wang, A., Zhang, N., Jia, L., Ma, S. and Xia, Q. Comparison of long-read methods for sequencing and assembly of lepidopteran pest genomes. International Journal of Molecular Sciences. 2023, 24(1), p. 649. https://doi.org/10.3390/ijms24010649.
  • [3] Walden, K. K. O., Cao, Y., Fields, C. J., Hernandez, A. G., Rendon, G. A., Robinson, G. E., Skinner, R. K., Stein, J. A. and Dietrich, C. H. High-quality genome assemblies for nine non-model North American insect species representing six orders (Insecta: Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, Neuroptera). Molecular Ecology Resources. 2024, 24(8), p. e14010. https://doi.org/https://doi.org/10.1111/1755-0998.14010.
  • [4] Kim, S.-R., Kwak, W., Kim, H., Caetano-Anolles, K., Kim, K.-Y., Kim, S.-B., Choi, K.-H., Kim, S.-W., Hwang, J.-S., Kim, M., et al. Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae. GigaScience. 2018, 7(1), p. gix113. https://doi.org/10.1093/gigascience/gix113.
  • [5] Dudchenko, O., Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., Shamim, M. S., Machol, I., Lander, E. S., Aiden, A. P., et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017, 356(6333), pp. 92-95. https://doi.org/10.1126/science.aal3327.
  • [6] Wang, X., Luan, Y. and Yue, F. EagleC: A deep-learning framework for detecting a full range of structural variations from bulk and single-cell contact maps. Science Advances. 2022, 8(24), p. eabn9215. https://doi.org/10.1126/sciadv.abn9215.
  • [7] Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. and Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature methods. 2021, 18(2), pp. 170-175. https://doi.org/10.1038/s41592-020-01056-5.
  • [8] Rhie, A., McCarthy, S. A., Fedrigo, O., Damas, J., Formenti, G., Koren, S., Uliano-Silva, M., Chow, W., Fungtammasan, A., Kim, J., et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021, 592(7856), pp. 737-746. https://doi.org/10.1038/s41586-021-03451-0.
  • [9] Li, H., Liu, C., Zhang, Y., Wang, X., Xiang, Z., Xia, Q., Miao, X. and Dai, F. A chromosome-level genome assembly of the Atlas moth (Attacus atlas) provides insights into its gigantism and conservation. Nature Ecology & Evolution. 2023, 7(9), pp. 1452-1464. https://doi.org/10.1038/s41559-023-02132-7.
  • [10] Van Oosterhout, C., Breden, F., Hohenlohe, P. A., Garner, B., Hand, B. K., Harrisson, K. A. and Funk, W. C. Genomic erosion in threatened species: A practical guide for conservation planners. Trends in Genetics. 2023, 39(4), pp. 281-297. https://doi.org/10.1016/j.tig.2022.12.007.

Similar Articles

11-20 of 49

You may also start an advanced similarity search for this article.