Criminal Regulatory Approaches to Deepfake-Related Offenses: Focusing on the Crime of Fraud

Main Article Content

Sixuan Xiang https://orcid.org/0009-0001-9994-3329

Keywords

single-cell RNA sequencing, coronary artery disease, immune microenvironment, atherosclerosis, cellular heterogeneity

Abstract

Coronary artery disease (CAD), which is driven primarily by atherosclerosis, represents a major global health burden. This review explores the dynamic evolution of the CAD immune microenvironment through single-cell RNA sequencing (scRNA-seq), revealing cellular heterogeneity and interactions. On the basis of the American Heart Association’s histological classification of atherosclerotic lesions, we systematically summarize discoveries supported by scRNA-seq across disease stages (types I-V) from early monocyte recruitment and lipid-resistant macrophage subpopulations (e.g., CD52-hi macrophages) in initial lesions to intensified inflammation involving T-cell activation, NK cell differentiation, and macrophage polarization in fatty streaks and intermediate lesions and late-stage fibrosis and T-cell clonal expansion leading to plaque instability. Key findings highlight immune imbalance exacerbated by comorbidities such as diabetes and systemic lupus erythematosus (SLE), with potential biomarkers (e.g., JUN) and therapeutic targets (e.g., the CCL4‒CCR5 axis and SPP1+ macrophages). Methodological limitations, such as the lack of spatial information and challenges in inferring causal relationships, are discussed. Future prospects, such as spatial transcriptomics integration, multiomics approaches, and AI-assisted precision medicine, are also proposed. This review highlights the transformative role of scRNA-seq in advancing CAD pathology toward precision diagnostics and therapies.

Abstract 0 | PDF Downloads 0

References

  • [1] Abbas, A., Raza, A., Ullah, M., Hendi, A. A., Akbar, F., Khan, S. U., Zaman, U., Saeed, S., Ur Rehman, K., Sultan, S., et al. A Comprehensive Review: Epidemiological Strategies, Catheterization and Biomarkers used as a Bioweapon in Diagnosis and Management of Cardio Vascular Diseases. Curr Probl Cardiol. 2023, 48(7), p. 101661. https://doi.org/10.1016/j.cpcardiol.2023.101661.
  • [2] Zaman, M. A. Coronary Artery Disease (CAD) and its interventional treatments. International Journal on Heart and Vascular system. 2023, 3(1), pp. 1-3.
  • [3] Melidoniotis, E., Kalogeropoulos, K., Tsatsaris, A., Zografakis-Sfakianakis, M., Lazopoulos, G., Tzanakis, N., Anastasiou, I. and Skalidis, E. Geospatial epidemiology of coronary artery disease treated with percutaneous coronary intervention in Crete, Greece. Geospatial Health. 2024, 19(1), p. 1251.
  • [4] Han, H., Du, R., Cheng, P., Zhang, J., Chen, Y. and Li, G. Comprehensive Analysis of the Immune Infiltrates and Aberrant Pathways Activation in Atherosclerotic Plaque. Frontiers in Cardiovascular Medicine. 2021, 7, p. 602345. https://doi.org/10.3389/fcvm.2020.602345.
  • [5] Liu, C., Liu, J., Zhang, Y., Wang, X. and Guan, Y. Immune-related potential biomarkers and therapeutic targets in coronary artery disease. Frontiers in Cardiovascular Medicine. 2023, 9, p. 1055422. https://doi.org/10.3389/fcvm.2022.1055422.
  • [6] He, T., Muhetaer, M., Wu, J., Wan, J., Hu, Y., Zhang, T., Wang, Y., Wang, Q., Cai, H. and Lu, Z. Immune Cell Infiltration Analysis Based on Bioinformatics Reveals Novel Biomarkers of Coronary Artery Disease. Journal of Inflammation Research. 2023, 16(null), pp. 3169-3184. https://doi.org/10.2147/JIR.S416329.
  • [7] Kott, K. A., Chan, A. S., Vernon, S. T., Hansen, T., Kim, T., de Dreu, M., Gunasegaran, B., Murphy, A. J., Patrick, E., Psaltis, P. J., et al. Mass cytometry analysis reveals altered immune profiles in patients with coronary artery disease. Clinical & Translational Immunology. 2023, 12(11), p. e1462. https://doi.org/10.1002/cti2.1462.
  • [8] Jansen, M. F., Hollander, M. R., van Royen, N., Horrevoets, A. J. and Lutgens, E. CD40 in coronary artery disease: a matter of macrophages? Basic Research in Cardiology. 2016, 111(4), p. 38. https://doi.org/10.1007/s00395-016-0554-5.
  • [9] Li, X. and Wang, C.-Y. From bulk, single-cell to spatial RNA sequencing. International Journal of Oral Science. 2021, 13(1), p. 36. https://doi.org/10.1038/s41368-021-00146-0.
  • [10] Stary, H. C. Natural history and histological classification of atherosclerotic lesions: an update. Arteriosclerosis, Thrombosis, and Vascular Biology. 2000, 20(5), pp. 1177-1178. https://doi.org/10.1161/01.ATV.20.5.1177.
  • [11] Stary, H. C., Blankenhorn, D. H., Chandler, A. B., Glagov, S., Insull Jr, W., Richardson, M., Rosenfeld, M., Schaffer, S., Schwartz, C. and Wagner, W. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology. 1992, 12(1), pp. 120-134. https://doi.org/10.1161/01.atv.12.1.120.
  • [12] Stary, H. C., Chandler, A. B., Dinsmore, R. E., Fuster, V., Glagov, S., Insull Jr, W., Rosenfeld, M. E., Schwartz, C. J., Wagner, W. D. and Wissler, R. W. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1995, 92(5), pp. 1355-1374. https://doi.org/10.1161/01.cir.92.5.1355.
  • [13] Stary, H. C., Chandler, A. B., Glagov, S., Guyton, J. R., Insull Jr, W., Rosenfeld, M. E., Schaffer, S. A., Schwartz, C. J., Wagner, W. D. and Wissler, R. W. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1994, 89(5), pp. 2462-2478. https://doi.org/10.1161/01.atv.14.5.840.
  • [14] Virmani, R. Atherosclerosis Pathology. Available from: https://emedicine.medscape.com/article/1612610-overview?form=fpf (accessed 8 January 2025).
  • [15] Hameed, M., Rai, P., Makris, M. and Weger-Lucarelli, J. Optimized protocol for mouse footpad immune cell isolation for single-cell RNA sequencing and flow cytometry. STAR Protocols. 2023, 4(3), p. 102409. https://doi.org/10.1016/j.xpro.2023.102409.
  • [16] Jogi, H. R., Smaraki, N., Nayak, S. S., Rajawat, D., Kamothi, D. J. and Panigrahi, M. Single cell RNA-seq: a novel tool to unravel virus-host interplay. VirusDisease. 2024, 35(1), pp. 41-54. https://doi.org/10.1007/s13337-024-00859-w.
  • [17] Chen, G., Ning, B. and Shi, T. Single-cell RNA-seq technologies and related computational data analysis. Frontiers in Genetics. 2019, 10, p. 317. https://doi.org/10.3389/fgene.2019.00317.
  • [18] Ding, S., Chen, X. and Shen, K. Single‐cell RNA sequencing in breast cancer: understanding tumor heterogeneity and paving roads to individualized therapy. Cancer Communications. 2020, 40(8), pp. 329-344. https://doi.org/10.1002/cac2.12078.
  • [19] Ziegenhain, C., Vieth, B., Parekh, S., Reinius, B., Guillaumet-Adkins, A., Smets, M., Leonhardt, H., Heyn, H., Hellmann, I. and Enard, W. Comparative analysis of single-cell RNA sequencing methods. Molecular cell. 2017, 65(4), pp. 631-643. e4. https://doi.org/10.1016/j.molcel.2017.01.023.
  • [20] Luecken, M. D. and Theis, F. J. Current best practices in single‐cell RNA‐seq analysis: a tutorial. Molecular Systems Biology. 2019, 15(6), p. e8746. https://doi.org/10.15252/msb.20188746.
  • [21] Turner, A. W., Hu, S. S., Mosquera, J. V., Ma, W. F., Hodonsky, C. J., Wong, D., Auguste, G., Song, Y., Sol-Church, K. and Farber, E. Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk. Nature Genetics. 2022, 54(6), pp. 804-816. https://doi.org/10.1038/s41588-022-01069-0.
  • [22] Kirichenko, T., Nedosugova, L., Bochkareva, L., Galstyan, K., Orekhov, A. and Sobenin, I. Monocyte activation in coronary heart disease and type 2 diabetes. Atherosclerosis. 2022, 355, p. 12. https://doi.org/10.1016/j.atherosclerosis.2022.06.263.
  • [23] Bashore, A. C., Xue, C., Kim, E., Yan, H., Zhu, L. Y., Pan, H., Kissner, M., Ross, L. S., Zhang, H. and Li, M. Monocyte single-cell multimodal profiling in cardiovascular disease risk states. Circulation Research. 2024, 135(6), pp. 685-700. https://doi.org/10.1161/CIRCRESAHA.124.324457.
  • [24] Hedrick, C. C. Single-cell sleuthing: Cracking the monocyte code for cardiovascular clues. Circulation Research. 2024, 135(6), pp. 701-703. https://doi.org/10.1161/CIRCRESAHA.124.325134.
  • [25] Jiang, J., Hiron, T. K., Agbaedeng, T. A., Malhotra, Y., Drydale, E., Bancroft, J., Ng, E., Reschen, M. E., Davison, L. J. and O’Callaghan, C. A. A novel macrophage subpopulation conveys increased genetic risk of coronary artery disease. Circulation Research. 2024, 135(1), pp. 6-25. https://doi.org/10.1161/CIRCRESAHA.123.324172.
  • [26] Li, Y., Shi, H., Zou, Y., Guan, Y., Liu, N. and Liu, B. Unraveling the immune activation mechanisms of DAMPs in coronary artery disease through transcriptomic and single-cell analyses. Cytokine. 2025, 191, p. 156952. https://doi.org/10.1016/j.cyto.2025.156952.
  • [27] Horstmann, H., Anto Michel, N., Westermann, D., Maerz, W., Zirlik, A. and Wolf, D. Prediction of cardiovascular outcomes by subtle changes in the peripheral immune cell landscape-insights from the LURIC single cell RNA-sequencing study (LuRNA). European Heart Journal. 2024, 45(Supplement_1), p. ehae666. 3699. https://doi.org/10.1093/eurheartj/ehae666.3699.
  • [28] Li, X., Li, Q., Liu, H., Zhang, Y., Xia, J., Wang, X., Lei, T. and Ma, J. To explore the key subgroup and their immune microenvironment during the formation of coronary plaque with scRNA‐seq. Cardiology Research and Practice. 2025, 2025(1), p. 3221767. https://doi.org/10.1155/crp/3221767.
  • [29] Song, X., Fu, Y., Li, C., Jia, Q., Ren, M., Zhang, X., Bie, H., Zhou, H., Gan, X. and He, S. Single-cell RNA sequencing atlas of peripheral blood mononuclear cells from subjects with coronary artery disease. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2024, 1871(1), p. 119593. https://doi.org/10.1016/j.bbamcr.2023.119593.
  • [30] Feng, Z., Li, H., Chen, N., Xu, K. and Zhang, B. Deciphering the role of CCL4-CCR5 in coronary artery disease pathogenesis: insights from Mendelian randomization, bulk RNA sequencing, single-cell RNA, and clinical validation. International Journal of Medical Sciences. 2024, 21(14), p. 2683. https://doi.org/10.7150/ijms.99518.
  • [31] LI, C., Osmani, L., Gu, J., Zhao, H., Kang, I., Bucala, R. and Dong, X. POS1390 single-cell profiling identifies peripheral immune signature of coronary artery disease in sle patients. Annals of the Rheumatic Diseases. 2024, 83, p. 929. https://doi.org/10.1136/annrheumdis-2024-eular.412.
  • [32] Zhou, Z., Zhang, G., Wang, Z., Xu, Y., Qin, H., Zhang, H., Zhang, P., Li, Z., Xu, S. and Tan, X. Molecular subtypes of ischemic heart disease based on circadian rhythm. Scientific Reports. 2024, 14(1), p. 14155. https://doi.org/10.1038/s41598-024-65236-5.
  • [33] Fu, M., Shu, S., Peng, Z., Liu, X., Chen, X., Zeng, Z., Yang, Y., Cui, H., Zhao, R. and Wang, X. Single-cell RNA sequencing of coronary perivascular adipose tissue from end-stage heart failure patients identifies SPP1+ macrophage subpopulation as a target for alleviating fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2023, 43(11), pp. 2143-2164. https://doi.org/10.1161/ATVBAHA.123.319828.
  • [34] Nie, W., Wang, Y., Xiao, Y., Lin, Z., Zhang, J., Zhao, Z. and Wang, Z. Identification of a key smooth muscle cell subset driving ischemic cardiomyopathy progression through single-cell RNA sequencing. Scientific Reports. 2025, 15(1), p. 27331.
  • [35] Liu, L., Li, C., Yu, L., Wang, Y., Pan, X. and Huang, J. Deciphering the role of SMARCA4 in cardiac disorders: Insights from single-cell studies on dilated cardiomyopathy and coronary heart disease. Cellular Signalling. 2024, 119, p. 111150. https://doi.org/10.1016/j.cellsig.2024.111150.
  • [36] Iqneibi, S., Saigusa, R., Khan, A., Oliaeimotlagh, M., Armstrong Suthahar, S. S., Kumar, S., Alimadadi, A., Durant, C. P., Ghosheh, Y. and McNamara, C. A. Single cell transcriptomics reveals recent CD8T cell receptor signaling in patients with coronary artery disease. Frontiers in Immunology. 2023, 14, p. 1239148. https://doi.org/10.3389/fimmu.2023.1239148.
  • [37] Merten, M., Rasper, T., Schuhmacher, B., Cremer, S., Hoffmann, J., Zeiher, A. M., Dimmeler, S. and Abplanalp, W. T. Chronic ischemic heart failure defines immune cell activation signatures from ScRNA-seq and flow cytometry with implications for cardiac resident cells. Circulation. 2022, 146(Suppl_1), pp. A13067-A13067. https://doi.org/10.1161/circ.146.suppl_1.13067.
  • [38] Abplanalp, W. T., Merten, M., Cremer, S., Rasper, T., Holz, K., Schuhmacher, B., Macinkovic, I., Tombor, L., John, D. and Zeiher, A. M. Abstract P3069: ScRNA-seq and flow cytometry based analysis reveals that chronic heart failure associates with enhanced activation and clonal expansion of T cells with predictive autoreactive capacity. Circulation Research. 2023, 133(Suppl_1), pp. AP3069-AP3069. https://doi.org/10.1161/res.133.suppl_1.P3069.
  • [39] Merten, M., Rasper, T., Cremer, S., Schuhmacher, B., Tombor, L., Zeiher, A., Hoffmann, J., Abplanalp, W. and Dimmeler, S. Human, mouse scRNA-seq and flow cytometry data in ischemic heart failure models predict immune cell activation signatures with altered endothelial cell cross talk. European Heart Journal. 2022, 43(Supplement_2), p. ehac544. 2965. https://doi.org/10.1093/eurheartj/ehac544.2965.

Similar Articles

21-30 of 39

You may also start an advanced similarity search for this article.